Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1615-6102
    Keywords: Cell cycle ; Protoplast division ; Chromatin structure ; Flow-cytometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Using different sources of protoplasts and two complementary techniques, flow cytometry and image analysis, to study the cell-cycle phases, we sought to define the particular protoplast state associated with the disposition to divide. Both inPetunia and inNicotiana plumbaginifolia, tissues with a higher G2 frequency (from different aged plants) yielded protoplasts capable of increased cell division. InSorghum, the age of the plant does not modify the proportion of G2 nuclei in leaf protoplasts, and we used root protoplasts to increase G2 frequencies. InHelianthus annuus, leaf protoplasts did not divide; however, hypocotyl protoplast preparations with relatively high 4C DNA frequencies do divide. Moreover, image analysis of chromatin structure indicated that leaf nuclei were in the G0 phase, unlike those from hypocotyls which were in G1. A high frequency of protoplasts with G2 nuclei appears to be correlated with the ability of a given preparation to undergo division; conversely, the differentiated G0 state is not conducive to division.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Antisense RNA ; YBR1012/YBR136w/MEC1/ESR1 ; Saccharomyces cerevisiae ; Flow cytometry ; Cell cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract YBR1012 (YBR136w) is an essential gene from Saccharomyces cerevisiae identified during the systematic sequencing of part of the right arm of chromosome II. We previously constructed a conditional allele of YBR1012 based on antisense RNA, by inserting a small fragment of this gene downstream from the inducible UASGAL10-CYC1 promoter. Several other antisense RNA constructions have since been made and their activity tested. The response of the system appears to be very delicate, as the presence or absence of 13 nucleotides of polylinker in the 300 nucleotide antisense transcript can dramatically modify its effectiveness. The most effective antisense RNA construction was used in flow cytometry studies to investigate the role of ybr1012p. The results show that during the antisense RNA block some 80% of the cells are arrested with their DNA unreplicated, suggesting that Ybr1012p is needed for progression through G1 or early S phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...