Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0931-1890
    Keywords: Key words Cuticular conductance ; Gallery forests ; Leaf development ; Photosynthesis ; Quercus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Seasonal changes in minimum leaf conductance to water vapor (gmin), an estimate of cuticular conductance, and photosynthetic gas exchange in two co-occurring oak species in north-east Kansas (USA) were examined to determine if leaf gas exchange characteristics correlated with differences in tree distribution. Bur oak (Quercus macrocarpa Michx.) is more abundant in mesic gallery forest sites, whereas chinquapin oak (Quercus muehlenbergii Englm.) is more abundant in xeric sites. Early, during leaf expansion, gmin was significantly lower in chinquapin oak than in bur oak, though midday water potentials were similar. After leaves had fully expanded, gmin decreased to seasonal minimum values of 4.57 (±0.274) mmol m–2 s–1 in bur oak, and 2.66 (±0.156) mmol m–2 s–1 in chinquapin oak. Water potentials at these times were significantly higher in chinquapin oak. As leaves were expanding, photosynthesis (Anet) was significantly higher in chinquapin oak than in bur oak. Later in the growing season, Anet and gleaf increased dramatically in both species, and were significantly higher in bur oak relative to chinquapin oak. We concluded that bur and chinquapin oak have a number of leaf gas exchange characteristics that minimize seasonal water loss. These characteristics are distinct from trees from more mesic sites, and are consistent with the distribution patterns of these trees in tall-grass prairie gallery forests.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2285
    Keywords: Cuticular conductance ; Gallery forests ; Leaf development ; Photosynthesis ; Quercus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Seasonal changes in minimum leaf conductance to water vapor (gmin), an estimate of cuticular conductance, and photosynthetic gas exchange in two co-occurring oak species in north-east Kansas (USA) were examined to determine if leaf gas exchange characteristics correlated with differences in tree distribution. Bur oak (Quercus macrocarpa Michx.) is more abundant in mesic gallery forest sites, whereas chinquapin oak (Quercus muehlenbergii Englm.) is more abundant in xeric sites. Early, during leaf expansion, gmin was significantly lower in chinquapin oak than in bur oak, though midday water potentials were similar. After leaves had fully expanded, gmin decreased to seasonal minimum values of 4.57 (±0.274) mmol m-2 s-1 in bur oak, and 2.66 (±0.156) mmol m-2 s-1 in chinquapin oak. Water potentials at these times were significantly higher in chinquapin oak. As leaves were expanding, photosynthesis (Anet) was significantly higher in chinquapin oak than in bur oak. Later in the growing season, Anet and gleaf increased dramatically in both species, and were significantly higher in bur oak relative to chinquapin oak. We concluded that bur and chinquapin oak have a number of leaf gas exchange characteristics that minimize seasonal water loss. These characteristics are distinct from trees from more mesic sites, and are consistent with the distribution patterns of these trees in tall-grass prairie gallery forests.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...