Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4889
    Keywords: alumina scales ; stresses ; strains ; fluorescence ; Raman spectroscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract By exploiting the strain dependence of the ruby luminescence line, we have measured room-temperature residual strains in thermally-grown alumina scales. Measurements were made on two alloys Fe-5Cr-28Al and Fe-18Cr 10Al (at.% bal. Fe), oxidized between 300–1300°C. Significantly different levels of strain buildup were observed in scales on these alloys. Results on similar alloys containing a dilute reactive element (RE) are also presented. Scales formed on RE-containing alloys (Zr or Hf) could support significantly higher strains at T ≥ 1000°C. Strain relief associated with spallation thresholds is readily observed. In early-stage oxidation, the evolution of transition phases is monitored using Raman and fluorescence spectroscopies. The fluorescence technique also provides a sensitive probe of early-stage formation of α-Al2O3. It appears that, in the presence of Cr2O3 or Fe2O3, the α-phase of Al2O3 can form at anomalously low temperatures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4889
    Keywords: Alumina scales ; stresses ; strains ; fluorescence ; finite-element calculations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Residual stress near edges and corners of thermally grown alumina scaleswere investigated. In this study, an edge is the intersection of twoorthogonal flat surfaces and a corner is the intersection of three suchsurfaces. Microfluorescence measurements, performed on alloys withcomposition Fe–28Al–5Cr (at.%, bal. Fe) oxidized at 900°C,showed a large (〉50%) reduction in hydrostatic stress in the vicinity ofedges and corners. Surprisingly, significant stress reduction persists outto distances twenty to fifty times the scale thickness from theedge. Finite-element analysis calculations confirm the experimental resultsand provide a considerably more detailed picture of the stress distributionand its components and show that much of the observed stress reduction nearan edge, is due to plastic deformation of the underlying metal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 46 (1996), S. 365-381 
    ISSN: 1573-4889
    Keywords: oxidation ; steel ; Raman ; scale ; transient oxides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Using Raman scattering we have investigated the oxidation, in air, of the Fe-Cr-Ni stainless steels Fe-25Cr-20Ni, Fe-25Cr-20Ni-3Zr, and Fe-24Cr-3Zr (wt.%) as a function of temperature in the range 300 to 1000°C. The Raman technique is very sensitive to, and provides a clear identification of, the oxides Fe2O3 and Cr2O3. However, the technique is insensitive to NiO, FeO, and does not give a clear identification of spinels. The Fe−Cr−Ni alloys form chromia scales at temperatures greater than ∼800°C. At lower oxidation temperatures, transient phases are observed. With a 1-h heat treatment at 300°C, we observe the formation of an unidentified scale; we speculate that it is either amorphous or consists of disordered spinel(s). Near 400°C we begin to observe hematite (Fe2O3). The intensity of the Fe2O3 signal increases with temperature to ∼600°C and then decreases, being largely replaced by the signal from Cr2O3. The thickness of the Cr2O3 scale increases with temperature up to ∼1000°C above which spallation becomes apparent. Spinel phases also apparently persist in the scale to 1000°C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...