Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1438-2199
    Keywords: Amino acids ; Asphyxia ; Hypothermia ; Glutamate receptors ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Perinatal asphyxia was induced by keeping pups-containing uterus horns, removed by hysterectomy, in a 37°C or a 30°C water bath. Asphyxia for a period of 21–22 min at 37°C led to a 97% mortality within the first 20 min period following delivery. When the asphyctic period was extended to more than 22 min all the pups died following delivery. When the asphyxia was induced at 30°C, 100% of the delivered pups survived and were accepted by surrogate mothers. The protective effect of hypothermia could be observed even when the pups-containing uterus horns were exposed to a 45–46 min asphyctic period. Pretreatment with dizocilpine (0.2 mg/kg s.c.), or 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX) (3–30 mg/kg s.c.), administered to the mothers one hour before hysterectomy, reduced slightly the mortality induced by a 21–22 min asphyctic period at 37°C. An increase in survival following a 22–23 min asphyctic period could only be observed after the highest dose of NBQX.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: Key words Basal ganglia ; Neuropeptides ; Monoamines ; Amino acids ; Microdialysis ; Chromogranin C ; Secretogranin ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In vivo microdialysis was used to study the effect of secretogranin II-derived peptides on dynorphin B (Dyn B), dopamine, γ-aminobutyric acid (GABA), glutamate and aspartate release in the substantia nigra and neostriatum of halothane-anaesthesized rats. In the substantia nigra, local infusion of secretoneurin (secretogranin II 154–186) (1–50 μM) increased, in a concentration-dependent manner, extracellular aspartate, glutamate, Dyn B, dopamine and GABA levels. The effect was particularly prominent on aspartate and glutamate levels which, following 50 μM of secretoneurin, were increased by 〉20 and 〉10 fold, respectively. However, the effect of secretoneurin on Dyn B release appeared to be more specific, since a significant increase (〉2 fold) was already observed following 1 μM of secretoneurin. In the neostriatum, Dyn B, glutamate, aspartate and GABA levels were also increased by local secretoneurin infusion, but the effect was less prominent than in the substantia nigra. In the substantia nigra, only Dyn B levels were significantly increased following infusion of 10 μM of the secretoneurin-C terminal (secretoneurin-15C), whereas Dyn B and GABA levels were increased by the same concentration of the secretogranin II C terminus (YM). Only glutamate and aspartate levels were increased by local infusion of 10 μM of secretogranin II 133–151 (LF), a peptide adjacent to secretoneurin in the primary amino acid sequence. In the neostriatum, Dyn B and GABA levels were increased by 10 μM of secretoneurin-15C. Dyn B levels were also increased by 10 μM of YM, and glutamate and aspartate levels were increased by 10 μM of both YM and LF. Thus, secretogranin II-derived peptides affect extracellular levels of several putative neurotransmitter systems monitored in the basal ganglia of the rat with in vivo microdialysis. The effect of Dyn B appears to be specific and related to a physiological role of secretoneurin, since (i) it occurs in an area where secretoneurin-immunocytochemistry has been observed, (ii) is exerted at comparatively low concentrations, and (iii) is mimicked by secretoneurin-15C. The increases in excitatory amino acid levels produced by high concentrations of secretoneurin and other secretogranin II-derived peptides reflect, perhaps, a potential neurotoxicity produced by abnormal accumulation of these peptides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1912
    Keywords: Basal ganglia ; Neuropeptides ; Monoamines ; Amino acids ; Microdialysis ; Chromogranin C ; Secretogranin ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In vivo microdialysis was used to study the effect of secretogranin II-derived peptides on dynorphin B (Dyn B), dopamine, γ-aminobutyric acid (GABA), glutamate and aspartate release in the substantia nigra and neostriatum of halothane-anaesthesized rats. In the substantia nigra, local infusion of secretoneurin (secretogranin II 154–186) (1–50 μM) increased, in a concentration-dependent manner, extracellular aspartate, glutamate, Dyn B, dopamine and GABA levels. The effect was particularly prominent on aspartate and glutamate levels which, following 50 μM of secretoneurin, were increased by 〉20 and 〉10 fold, respectively. However, the effect of secretoneurin on Dyn B release appeared to be more specific, since a significant increase (〉2 fold) was already observed following 1 μM of secretoneurin. In the neostriatum, Dyn B, glutamate, aspartate and GABA levels were also increased by local secretoneurin infusion, but the effect was less prominent than in the substantia nigra. In the substantia nigra, only Dyn B levels were significantly increased following infusion of 10 μM of the secretoneurin-C terminal (secretoneurin-15C), whereas Dyn B and GABA levels were increased by the same concentration of the secretogranin II C terminus (YM). Only glutamate and aspartate levels were increased by local infusion of 10 μM of secretogranin II 133-151 (LF), a peptide adjacent to secretoneurin in the primary amino acid sequence. In the neostriatum, Dyn B and GABA levels were increased by 10 μM of secretoneurin-15C. Dyn B levels were also increased by 10 μM of YM, and glutamate and aspartate levels were increased by 10 μM of both YM and LF. Thus, secretogranin 11-derived peptides affect extracellular levels of several putative neurotransmitter systems monitored in the basal ganglia of the rat with in vivo microdialysis. The effect of Dyn B appears to be specific and related to a physiological role of secretoneurin, since (i) it occurs in an area where secretoneurin-immunocytochemistry has been observed, (ii) is exerted at comparatively low concentrations, and (iii) is mimicked by secretoneurin-15C. The increases in excitatory amino acid levels produced by high concentrations of secretoneurin and other secretogranin II-derived peptides reflect, perhaps, a potential neurotoxicity produced by abnormal accumulation of these peptides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Caudate-putamen ; 6-hydroxydopamine ; Dopamine receptor ; choline acetyltransferase ; in situ hybridization ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In situ hybridization was used to study dopamine D2 receptor (D2R) and choline acetyltransferase (ChAT) mRNA expression in neurons of the rat forebrain, both on control animals and after a unilateral 6-hydroxydopamine (6-OHDA) lesion of midbrain dopamine neurons. D2R mRNA expressing neurons were seen in regions which are known to be heavily innervated by midbrain dopamine fibers such as caudate-putamen, nucleus accumbens and olfactory tubercle. ChAT mRNA expressing neurons were seen in caudate-putamen, nucleus accumbens and septal regions including vertical limb of the diagonal band. In caudate-putamen, approximately 55% of the medium sized neurons, which is the predominating neuronal cell-size in this region, were specifically labeled with the D2R probe. In addition, approximately 95% of the large size neurons in caudate-putamen were specifically labeled with both the D2R and ChAT probes, suggesting that most cholinergic neurons in the caudate-putamen express D2R mRNA. After a unilateral lesion of midbrain dopamine neurons, no change in the level of either D2R or ChAT mRNA were seen in the large size intrinsic cholinergic neurons in caudate-putamen. Similarily, no evidence was obtained for altered levels of D2R mRNA in medium size neurons in medial caudate-putamen, or nucleus accumbens. However, an increase in the number of medium size neurons expressing D2R mRNA was observed in the lateral part of the dopamine deafferented caudateputamen. Thus, it appears that midbrain dopamine deafferentation causes an increase in D2R mRNA expression in a subpopulation of medium size neurons in the lateral caudate-putamen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: Dynorphin ; Substance P ; Neurokinin A ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The striatonigral pathway contains several neurotransmitters which may regulate the activity of the nigrostriatal dopamine projection in the rat. This was investigated by measuring extracellular dopamine levels in the striatum, using microdialysis, after injections of GABA (300 nmol/0.2 μl), dynorphin A (0.5 nmol/0.2 μl), substance P (0.07 mnol/0.2 μl) or neurokinin A (0.09 nmol/0.2 μl) into the ipsilateral substantia nigra, pars reticulata (SNR). Intranigral injections of GABA or dynorphin A inhibited, while intranigral injections of substance P or neurokinin A stimulated dopamine levels in the ipsilateral striatum. In rats with ibotenic acid lesions (2.5 μg/0.5 μl) in the SNR, intranigral injections of GABA or dynorphin A inhibited, while intranigral injections of substance P or neurokinin A stimulated dopamine levels in the ipsilateral striatum. These responses were not significantly different than those in unlesioned rats. Analysis of the intranigral lesion with in situ hybridization revealed a heavy loss of glutamic acid decarboxylase mRNA expression in the SNR and a significant loss of tyrosine hydroxylase (TH) mRNA expression in the SNC. Immunohistochemical analysis revealed a disappearance of TH-Like immunoreactivity (LI) im dendrites in the SNR, a considerable loss of TH-LI cell bodies in the SNC and a restricted loss of neuropeptide K-LI in the SNR around the tip of the injection cannula. Furthermore, lesioned rats rotated ipsilateral to the lesion after apomorphine (1 mg/kg, s.c.), indicating that the basal ganglia output mediated via the SNR GABA neurons was impaired on the lesioned side. Analysis of the striatum revealed that a dense TH-LI fiber network could still be seen on the lesioned side. Furthermore, basal and amphetamine stimulated extracellular dopamine levels in the striatum on the lesioned side were not significantly depleted. This indicates that the ascending nigrostriatal dopamine projection was functionally intact on the lesioned side. These findings indicate that intranigral GABA, dynorphin A, substance P and neurokinin A modulation of ipsilateral striatal dopamine release is mediated via direct action on the nigrostriatal projection. Thus, it is suggested that the striatonigral pathway, which contains GABA, dynorphin, substance P and neurokinin A, exerts a direct regulatory effect on the activity of the nigrostriatal dopamine projection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 80 (1990), S. 489-500 
    ISSN: 1432-1106
    Keywords: Dopamine ; Neuropeptide Y ; Somatostatin ; Tachykinin ; Cholecystokinin ; In situ hybridization ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In situ hybridization was used to study the expression of prepro-neuropeptide Y (NPY), preprosomatostatin (SOM), preprotachykinin (PPT) and preprocholecystokinin (CCK) mRNA in caudate-putamen and frontoparietal cortex of rat brain with unilateral lesion of midbrain dopamine neurons. Neurons expressing NPY and SOM mRNA showed a similar distribution and the expression of both NPY and SOM appears to be regulated by dopamine in a similar fashion. Following a dopamine deafferentation, the numerical density of both NPY and SOM mRNA producing neurons almost doubled in the lesioned caudate-putamen with no change in the average grain density over positive neurons. Hence, in the intact caudate-putamen dopamine appears to suppress expression of these two neuropeptide genes leading to an activation of both NPY and SOM mRNA expression in many non- or low-expressing neurons when the level of dopamine is decreased. In the fronto-parietal cortex, on the other hand, dopamine appears to stimulate NPY and SOM gene expression. Thus, in the absence of dopamine about half of the NPY positive neurons disappeared. However, for SOM the number of positive neurons did not change, but rather most positive neurons appeared to have down-regulated their SOM mRNA expression. No evidence was found for a change in CCK mRNA expression by the dopamine deafferentation, while PPT mRNA expression decreased in the deafferented caudate-putamen. Consequently, dopamine exerts dissimilar effects on the expression of different neuropeptide genes, that in turn do not respond in the same way in different brain regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: Key words Perinatal asphyxia ; Apoptosis ; Necrosis ; Hematoxylin-eosin ; DNA fragmentation ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The consequences of perinatal asphyxia on the rat brain were studied 80 min to 8 days after birth with hematoxylin-eosin and in situ DNA double-strand-breaks labeling histochemistry. Asphyxia was induced by immersing fetus-containing uterus horns, removed from ready-to-deliver Sprague-Dawley rats, in a water bath at 37°C for various time periods (0–22 min). Spontaneous- and cesarean-delivered pups were used as controls. Perinatal asphyxia led to a decrease in the rate of survival, depending upon the length of the insult. No gross morphological changes could be seen in the brain of either control or asphyctic pups at any of the studied time points after delivery. However, in all groups, nuclear chromatin fragmentation, corresponding to in situ detection of DNA fragmentation, was observed at different stages. Nuclear fragmentation in control pups showed a specific distribution that appeared to be related to brain maturation, thus indicating programmed cell death. A progressive and delayed increase in nuclear fragmentation was found in asphyctic pups, which was dependent upon the length of the perinatal insult. The most evident effect was seen in frontal cortex, striatum, and cerebellum at postnatal day 8, although changes were also found in ventral-posterior thalamus, at days 1 and 2. Thus, nuclear chromatin fragmentation in asphyctic pups indicates a delayed post-asphyctic neuronal death. The absence of signs of inflammation or necrosis suggests that delayed neuronal cell death following perinatal asphyxia is an active, apoptosis-like phenomenon.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1912
    Keywords: Key words Neocortex ; Cholecystokinin ; Dynorphin ; Amino acids ; Microdialysis ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of sulphated cholecystokinin-8 (CCK-8S) on extracellular dynorphin B, aspartate, glutamate and GABA levels in the rat fronto-parietal cortex was investigated with in vivo microdialysis. The peptide was infused through the microdialysis probe trying to mimic local CCK-8S release. Basal levels of dynorphin B were around 20pM, aspartate 100nM, glutamate 600nM and GABA 30nM. CCK-8S (10μM) induced a ≈3-fold increase in extracellular dynorphin B, aspartate and glutamate levels, while GABA levels were only slightly increased. The effect of CCK-8S was restricted to the stimulated neocortex. Systemic pretreatment with the CCKB antagonist, L-365, 260, but not with the CCKA antagonist, L-364, 718, significantly antagonised the effect of CCK-8S on cortical dynorphin B and aspartate release. However, both CCKA and CCKB antagonists inhibited the increase in cortical glutamate levels. Thus, the present results indicate that cortical CCK release exerts a stimulatory modulation on cortical dynorphin B and aspartate release via the CCKB receptor subtype, and on glutamate release via both CCKA and CCKB receptor subtypes. Considering electrophysiological evidence that CCK increases neuronal firing rates in many brain regions, it may be suggested that CCK represents a stimulatory system modulating the function of the neocortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1106
    Keywords: Perinatal asphyxia ; Dopamine utilization ; Tyrosine hydroxylase activity ; Substantia nigra ; Neostriatum ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The present study was undertaken in order to study the effects of perinatal asphyxia on tyrosine hydroxylase (TH) activity, dopamine levels and turnover, and dopamine metabolites (3,4-dihydroxyphenylacetic acid, DOPAC, homovanillic acid, HVA, and 3-methoxytyramine, 3-MT, analyzed by high-performance liquid chromatography, HPLC) measured in the basal ganglia of the 20- to 40-min-old newborn and 4-week-old male rat. Asphyxia was induced in pups by placing the fetuses, still in their uterus horns removed by hysterectomy from pregnant rats at full term, in a 37°C water bath for 15–16 min or 19–20 min. Following asphyxia, the uterus horns were opened, and the pups were removed and stimulated to breathe. A 100% and 50–80% pup survival was obtained following 15–16 min and 19–20 min of asphyxia, respectively. Acute changes were studied in brains from newborn pups 20–40 min after delivery, and long-term changes were studied in brains from 4-week-old rats. No changes in TH-activity could be observed in the substantia nigra/ventral tegmental area (SN/VTA), the striatum, or the accumbens nucleus/olfactory tubercle (ACC/TUB), in the newborn or the 4-week-old rat. In the newborn rat, 19–20 min of asphyxia increased (as compared to controls) dopamine levels in the SN/VTA to 136±14% and in the ACC/TUB to 160±10%, indicating an increased synthesis and/or release of dopamine. DOPAC levels were increased in the SN/VTA to 150±14% and in the ACC/TUB to 151±10%, and HVA levels were increased to 152±16% in the striatum and to 117±4% in the ACC/TUB. Following 15–16 min of asphyxia, dopamine levels were increased to 130±12% in the ACC/TUB, and DOPAC levels were increased to 135±6% and 130±12% in the SN/VTA and the ACC/TUB, respectively. This suggests that the increased dopamine levels may preferably reflect an increased release of dopamine following perinatal asphyxia. In the 4-week-old rat, dopamine levels were decreased in the SN/VTA to 71±4%, in the striatum to 52±8%, and in the ACC/TUB to 53±7%, following 19–20 min of perinatal asphyxia as compared to controls. No changes were observed in DOPAC, HVA, or 3-MT levels, indicating that the reduced dopamine levels reflect a reduced dopamine synthesis following perinatal asphyxia. A decrease in dopamine utilization was observed in the striatum to 15±8% and in the ACC/TUB to 9±13% following 19–20 min of perinatal asphyxia as compared to controls. This indicates that perinatal asphyxia produced long-lasting reductions in activity in the mesostriatal/mesolimbic dopamine systems in the 4-week-old rat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1438-2199
    Keywords: Basal ganglia ; Excitatory amino acids ; Monoamines ; Neuropeptides ; Microdialysis ; Immunocytochemistry ; Parkinson's disease ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary There is immunohistochemical evidence suggesting that glutamate (Glu) is released from nerve terminals and acts, via several receptor subtypes, as a major excitatory neurotransmitter in the cortico-striatal pathway of the rat. Aspartate (Asp) is also present in cortico-striatal neurons, but its role as a neurotransmitter has been questioned, since, in contrast to Glu, it has not been demonstrated in presynaptic vesicles. Glu and Asp can be found at subμM concentrations in the extracellular compartment of most areas of the basal ganglia. Their concentrations are largely regulated by transport mechanisms, but also by a synaptotagmin-dependent exocytotic release, and are sufficiently high to occupy junctional and extrajunctional receptors. We have investigated whether Glu and Asp release in the neostriatum can be selectively modulated by different neuronal systems. Dopamine (DA) and cholecystokinin (CCK) selectively stimulate Asp release, via D1 and CCKB receptor subtypes, respectively. Also opioid κ-agonists increase Asp release. We propose that the selective modulation of Asp release by D1−, CCKB- and κ agonists involves striatal neurons containing Asp, but not Glu. In contrast, local perfusion with the ,μ-opioid antagonist D-Phe-Cys-Tyr-D-Trp-Orn-ThrPen-Thr-NH2 (CTOP) increases both Glu and Asp release. This effect is probably exerted on cortico-striatal terminals, via presynaptic inhibitory μ-receptors. Thus, these results demonstrate that extracellular levels of Glu and Asp are modulated differentially by different neuronal systems, and suggest that in the neostriatum of the rat there are neuronal populations using Glu and/or Asp as messenger(s).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...