Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 111 (1996), S. 215-232 
    ISSN: 1432-1106
    Keywords: Cerebral cortex ; Orbital ; Anatomy ; Connections ; Corticocortical ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The cortical and thalamic afferent connections of rat orbital cortex were investigated using fluorescent retrograde axonal tracers. Each of the four orbital areas has a distinct pattern of connections. Corticocortical connections involving the ventral and ventrolateral orbital areas are more extensive than those of the medial and lateral orbital areas. The medial orbital area has cortical connections with the cingulate, medial agranular (Fr2) and posterior parietal (PPC) cortices. The ventral orbital area has connections with the cingulate area, area Fr2, secondary somatic sensory area Par2, PPC, and visual areas Oc2M and Oc2L. The ventrolateral orbital area (VLO) receives cortical input from insular cortex, area Fr2, somatic sensory areas Par1 and Par2, PPC and Oc2L. The lateral orbital area has cortical connections limited to the agranular and granular insular areas, and Par2. Thalamic afferents to the four orbital fields are also topographically organized, and are focused in the submedial and mediodorsal nuclei. The ventrolateral orbital area receives input from the entirety of the submedial nucleus, whereas the other orbital areas receive input from its periphery only. Each orbital area is connected with a particular segment of the mediodorsal nucleus. The medial orbital area receives its principal thalamic afferents from the parataenial nucleus, the dorsocentral portion of the mediodorsal nucleus, and the ventromedial portion of the submedial nucleus. The ventral orbital area receives input from the lateral segment of the mediodorsal nucleus, the rostromedial portion of the submedial nucleus and the central lateral nucleus. Thalamic afferents to the ventrolateral orbital area arise from the entirety of the submedial nucleus and from the lateral segment of the mediodorsal nucleus. The lateral orbital area receives thalamic afferents from the central segment of the mediodorsal nucleus, the ventral portion of the submedial nucleus and the ventromedial nucleus. The paraventricular, ventromedial, rhomboid and reuniens nuclei also provide additional input to the four orbital areas. The connections of the ventrolateral orbital area are interpreted in the context of its role in directed attention and allocentric spatial localization. The present findings provide anatomical support for the view that areas Fr2, PPC and VLO comprise a cortical network mediating such functions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 100 (1994), S. 67-84 
    ISSN: 1432-1106
    Keywords: Cerebral cortex ; Anatomy ; Connections Corticocortical ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Anatomical and functional findings support the contention that there is a distinct posterior parietal cortical area (PPC) in the rat, situated between the rostrally adjacent hindlimb sensorimotor area and the caudally adjacent secondary visual areas. The PPC is distinguished from these areas by receiving thalamic afferents from the lateral dorsal (LD), lateral posterior (LP), and posterior (Po) nuclei, in the absence of input from the ventrobasal complex (VB) or dorsal lateral geniculate (DLG) nuclei. Behavioral studies have demonstrated that PPC is involved in spatial orientation and directed attention. In the present study we used fluorescent retrograde axonal tracers primarily to investigate the cortical connections of PPC, in order to determine the organization of the circuitry by which PPC is likely to participate in these functions, and also to determine how the topography of its thalamic connections differs from that of neighboring cortical areas. The cortical connections of PPC involve the ventrolateral (VLO) and medial (MO) orbital areas, medial agranular cortex (area Fr2), portions of somatic sensory areas Par1 and Par2, secondary visual areas Oc2M and Oc2L, auditory area Tel, and retrosplenial cortex. The secondary visual areas Oc2L and Oc2M have cortical connections which are similar to those of PPC, but are restricted within orbital cortex to area VLO, and within area Fr2 to its caudal portion, and do not involve auditory area Te1. The cortical connections of hindlimb cortex are largely restricted to somatic sensory and motor areas. Retrosplenial cortex, which is medially adjacent to PPC, has cortical connections that are prominent with visual cortex, do not involve somatic sensory or auditory cortex, and include the presubiculum. We conclude that PPC is distinguished by its pattern of cortical connections with the somatic sensory, auditory and visual areas, and with areas Fr2, and VLO/MO, in addition to its exclusive thalamic connectivity with LD, LP and Po. Because recent behavioral studies indicate that PPC, Fr2 and VLO are involved in directed attention and spatial learning, we suggest that the interconnections among these three cortical areas represent a major component of the circuitry for these functions in rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...