Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Key words: Adrenal cortex ; Apoptosis ; DNA fragmentation ; DNA 3′-end labeling ; Adrenocorticotropic hormone ; Hypophysectomy ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Adrenocortical cell apoptosis was studied by using an established in vivo model, the hypophysectomized rat, and an in vitro model, viz., rat adrenal glands in short-term organ culture. In vivo, apoptosis (biochemical autoradiographic analysis of internucleosomal DNA cleavage) was weak and not apparent until 12–24 h after hypophysectomy. In situ histochemical localization of 3′-end DNA strand breaks revealed that apoptosis in vivo occurred nearly exclusively in subpopulations of zona reticularis cells. Adrenocorticotropic hormone (ACTH) maintenance completely blocked these indices of apoptosis. By contrast, apoptosis (DNA fragmentation) in cultured rat adrenal glands without ACTH was extensive and relatively rapid, being apparent after 1 h and increasing with the duration of incubation. ACTH attenuated (by 44%) but did not completely block apoptosis in vitro. Thus, ACTH appears to be the sole pituitary hormone that forestalls apoptosis of terminally differentiated adrenocortical (zona reticularis) cells. However, the discrepancy between in vitro and in vivo models in terms of the magnitude and rate of DNA fragmentation suggests that, in vivo, other factors finely regulate the magnitude of adrenocortical apoptotic cell death.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 270 (1992), S. 87-93 
    ISSN: 1432-0878
    Keywords: Ovarian nerves ; Development ; Folliculogenesis ; Tyrosine hydroxylase ; Immunohistochemistry ; Electron microscopy ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Sympathetic neurotransmitters have been shown to be present in the ovary of the rat during early postnatal development and to affect steroidogenesis before the ovary becomes responsive to gonadotropins, and before the first primordial follicles are formed. This study was undertaken to determine if development of the ovarian innervation is an event that antedates the initiation of folliculogenesis in the rat, Rattus norvegicus. Serial sections of postnatal ovaries revealed a negligible frequency of follicles 24 h after birth (about 1 primordial follicle per ovary). Twelve hours later there were about 500 follicles per ovary, a number that more than doubled to about 1300 during the subsequent 12 h, indicating that an explosive period of follicular differentiation occurs between the end of postnatal days 1 and 2. Electron microscopy demonstrated that before birth the ovaries are already innervated by fibers containing clear and dense-core vesicles. Immunohistochemistry performed on either fetal (day 19) or newborn (less than 15h after birth) ovaries showed the presence of catecholaminergic nerves, identified by their content of immunoreactive tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. While some of these fibers innervate blood vessels, others are associated with primordial ovarian cells, thereby suggesting their participation in non-vascular functions. Since prefollicular ovaries are insensitive to gonadotropins, the results suggest that the developing ovary becomes subjected to direct neurogenic influences before it acquires responsiveness to gonadotropins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...