Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Locus coeruleus ; Kölliker-Fuse ; Raphe nuclei ; Synaptic transmission ; Spindle afferents ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of brief trains of electrical stimuli applied within the locus coeruleus and subcoeruleus, the Kölliker-Fuse nucleus and the raphe magnus, obscurus and pallidus nuclei were tested on transmission from group I and group II muscle afferent fibres in mid-lumbar spinal segments of chloralose anaesthetized cats. Changes in the effectiveness of transmission from these afferents were assessed from changes in the size of monosynaptic extracellular field potentials evoked by them. The depression of group II field potentials occurred at conditioning-testing intervals of 20–400 ms, and was maximal at intervals of 40–100 ms and 30–60 ms for potentials recorded in the intermediate zone and dorsal horn, respectively. At intervals up to about 30 ms it was combined with the depression of group I components of the intermediate zone field potentials. However, at longer intervals the conditioning stimuli depressed group II components of these potentials as selectively as monoamines applied ionophoretically at the recording site (Bras et al., 1989a, 1990). Thus, only the late depressive actions are considered as being possibly mediated by impulses in descending noradrenergic and/or serotonergic fibres. No major differences were found in the relative degree of depression of transmission from group II afferents by stimulation of the locus coeruleus/subcoeruleus, Kölliker-Fuse or raphe nuclei, either in the dorsal horn or in the intermediate zone. Since field potentials at these locations are preferentially depressed by ionophoretic application of serotonin and noradrenaline (Bras et al., 1990), and since the locus coeruleus/subcoeruleus, Kölliker-Fuse and raphe nuclei are interconnected, the study leads to the conclusion that both noradrenergic and serotonergic descending pathways can be activated by stimuli applied within either of them. Selective depression of field potentials of group II origin was also evoked by stimulation at other sites, e.g. the periaqueductal grey and medullary reticular formation, when conditioning-testing intervals were sufficiently long. Such a depression is considered to be secondary to activation of neurones of the locus coeruleus/subcoeruleus, Kölliker-Fuse or raphe nuclei and attributed to the spread of current or transsynaptic activation of these neurones, or to stimulation of their axon collaterals outside the nuclei rather than to other descending medullo-spinal systems. The non-selective depression of field potentials evoked by group I and group II afferents at shorter conditioning-testing intervals is proposed to be due to actions of reticulo-spinal pathways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 105 (1995), S. 25-38 
    ISSN: 1432-1106
    Keywords: Cuneiform nucleus ; Synaptic transmission ; Spindle afferents ; Spinal cord ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of short trains of electrical stimuli applied within the cuneiform nucleus and the subcuneiform region were examined on transmission from group I and group II muscle afferents to first-order spinal neurons. Variations in the effectiveness of transmission from these afferents were assessed from changes in the sizes of the monosynaptic component of extracellular field potentials evoked following stimulation of muscle nerves. Field potentials evoked from group II muscle afferents in the dorsal horn of the midlumbar and sacral segments and in the intermediate zone of the midlumbar segments were reduced when the test stimuli applied to peripheral nerves were preceded by conditioning stimulation of the cuneiform nucleus or the subcuneiform region. The depression occurred at conditioning-testing intervals of 20–400 ms, being maximal at intervals of 32–72 ms for dorsal horn potentials and 40–100 ms for intermediate zone potentials. At the shortest intervals, both group II and group I field potentials in the intermediate zone were depressed. Conditioning stimulation of the cuneiform nucleus depressed group II field potentials nearly as effectively as conditioning stimulation of the coerulear or raphe nuclei. We propose that the nonselective depression of transmission from group I and II afferents at short intervals is due to the activation of reticulospinal pathways by cells or fibers stimulated within the cuneiform area. We also propose that the selective depression of transmission from group II afferents at long intervals is mediated at least partly by monoaminergic pathways, in view of the similarity of the effects of conditioning stimulation of the cuneiform nucleus and of the brainstem monoaminergic nuclei and by directly applied monoamines (Bras et al. 1990). In addition, it might be caused by primary afferent depolarization mediated by non-monoaminergic fibers (Riddell et al. 1992).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 15 (1972), S. 39-53 
    ISSN: 1432-1106
    Keywords: Red nucleus ; Rubrospinal tract ; Primary afferent terminals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Effects evoked by stimulation of the red nucleus on primary afferent terminals in the lower lumbar segments of cats have been investigated by recording dorsal root potentials (DRPs) and by recording (intracellularly and by excitability measurements) the primary afferent depolarization (PAD) evoked in terminals of different afferent systems. Control experiments suggest that the effects are mediated by the rubrospinal tract. 2. Stimulation of the red nucleus evoked a large DRP and correspondingly there was a pronounced PAD in Ib and low threshold cutaneous afferents. A dual effect was found in Ia afferent terminals; sometimes a weak PAD was detected while in other cases there was dominating primary afferent hyperpolarization (PAH). 3. Rubrospinal volleys are found to facilitate transmission of DRPs evoked from Ia, Ib, cutaneous and high threshold muscle afferents, presumably by exerting an excitatory action on the interneurones mediating the effect from these afferents. Stimulation of the red nucleus may also inhibit transmission in the pathway mediating depolarization of Ia afferent terminals from Ia afferents, probably by activating a segmental pathway from the flexor reflex afferents from which the same effect is evoked. It is postulated that the PAH evoked in Ia afferents from the red nucleus is due to this inhibitory effect and caused by a removal of a tonic PAD in them. 4. The possible role in motor regulation of the rubral effects on primary afferent terminals is discussed in relation to the rubrospinal effects on reflex pathways to motoneurones. This work was supported by the Swedish Medical Research Council (Project No. 14X-94-07C).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 15 (1972), S. 54-78 
    ISSN: 1432-1106
    Keywords: Red nucleus ; Rubrospinal tract ; Lumbosacral interneurones
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The effect of stimulation of the red nucleus on interneurones in the dorsal horn and intermediate region in the lower lumbar spinal cord has been investigated in cats. It has been ascertained that the effects are mediated by the rubrospinal tract. 2. Extracellular monosynaptic focal potentials evoked by single volleys in the rubrospinal tract were recorded in Rexed's layer VI and VII from a region partly overlapping with that in which focal potentials from group I muscle afferents are evoked, but extending more ventrally. 3. Monosynaptic excitatory action from the rubrospinal tract (recorded in 60 of 340 interneurones) was found in two main categories of interneurones: a) cells monosynaptically activated or disynaptically inhibited from group I muscle afferents and b) cells di- or polysynaptically activated from the flexor reflex afferents or exclusively from cutaneous afferents. The cells under a) are located more dorsally than those under b) but both within the region in which rubral focal monosynaptic potentials are recorded. There was no evidence suggesting that rubrospinal fibres have monosynaptic connexions with interneurones not influenced from primary afferents. 4. Many of the group I interneurones in the intermediate region are without monosynaptic connexions from the rubrospinal tract as are the dorsal horn cells monosynaptically activated from cutaneous afferents and dorsally located cells which do not receive monosynaptic connexions from primary afferents but are polysynaptically activated from the FRA. 5. Late (di- or polysynaptic) excitatory, inhibitory or mixed postsynaptic rubral effects are common and were found in interneurones with or without monosynaptic connexions from primary afferents but receiving similar effects from the FRA. The occurrence of spatial facilitation between peripheral nerves and the rubrospinal tract in evoking late PSPs suggests that the late rubral PSPs are evoked by activation of interneurones transmitting actions from primary afferents. 6. Some consequences of the conjoint control of interneurones from primary afferents and the rubrospinal tract are discussed. The monosynaptic effects from the rubrospinal tract are considered in relation to the rubral control of Ib reflex pathways and to the disynaptic rubromotoneuronal PSPs evoked by monosynaptic activation of last order interneurones of polysynaptic reflex pathways from primary afferents. The late rubral effects on interneurones are discussed in relation to interactive mechanisms between segmental interneuronal pathways. Rubrospinal and corticospinal effects are compared. This work was supported by the Swedish Medical Research Council (Project No. 14X-9407C).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...