Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 101 (1995), S. 13-20 
    ISSN: 1432-1939
    Keywords: Abutilon theophrasti ; Amaranthus retroflexus ; Growth ; Low CO2 ; Reproduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order study C3 and C4 plant growth in atmospheric CO2 levels ranging from past through predicted future levels, Abutilon theophrasti (C3) and Amaranthus retroflexus (C4) were grown from seed in growth chambers controlled at CO2 partial pressures of 15 Pa (below Pleistocene minimum), 27 Pa (pre-industrial), 35 Pa (current) and 70 Pa (predicted future). After 35 days of growth, CO2 had no effect on the relative growth rate, total biomass or partitioning of biomass in the C4 species. However, the C3 species had greater biomass accumulation with increasing CO2 partial pressure. C3 plants grown in 15 Pa CO2 for 35 days had only 8% of the total biomass of plants grown in 35 Pa CO2, C3 plants had lower relative growth rates and lower specific leaf mass than plants grown in higher CO2 partial pressures, and aborted reproduction. C3 plants grown in 70 Pa CO2 had greater root mass and root-to-shoot ratios than plants grown in lower CO2 partial pressures. These findings, support other studies that show C3 plant growth is more responsive to CO2 partial pressure than C4 plant growth. Differences in growth responses to CO2 levels of the Pleistocene through the future suggest that competitive interactions of C3 and C4 annuals have changed through geologic time. This study also provided evidence that C3 annuals may be operating near a minimum CO2 partial pressure for growth and reproduction at 15 Pa CO2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 123 (2000), S. 330-341 
    ISSN: 1432-1939
    Keywords: Key words  Arabidopsis thaliana ; Carbon dioxide ; Evolution ; Reproduction ; Selection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to increase from 36 to 70 Pa CO2 before the end of the 21st century. High pCO2 often increases the growth and reproduction of C3 annuals, whereas low pCO2 decreases growth and may reduce or prevent reproduction. Previous predictions regarding the effects of high and low pCO2 on C3 plants have rarely considered the effects of evolution. Knowledge of the potential for evolution of C3 plants in response to CO2 is important for predicting the degree to which plants may sequester atmospheric CO2 in the future, and for understanding how plants may have functioned in response to low pCO2 during the Pleistocene. Therefore, three studies using Arabidopsis thaliana as a model system for C3 annuals were conducted: (1) a selection experiment to measure responses to selection for high seed number (a major component of fitness) at Pleistocene (20 Pa) and future (70 Pa) pCO2 and to determine changes in development rate and biomass production during selection, (2) a growth experiment to determine if the effects of selection on final biomass were evident prior to reproduction, and (3) a reciprocal transplant experiment to test if pCO2 was a selective agent on Arabidopsis. Arabidopsis showed significant positive responses to selection for high seed number at both 20 and 70 Pa CO2 during the selection process. Furthermore, plants selected at 20 Pa CO2 performed better than plants selected at 70 Pa CO2 under low CO2 conditions, indicating that low CO2 acted as a selective agent on these annuals. However, plants selected at 70 Pa CO2 did not have significantly higher seed production than plants selected at 20 Pa CO2 when grown at high pCO2. Nevertheless, there was some evidence that high CO2 may also be a selective agent because changes in development rate and biomass production during selection occurred in opposite directions at low and high pCO2. Plants selected at high pCO2 showed no change or reductions in biomass relative to control plants due to a decrease in the length of the life cycle, as indicated by earlier initiation of flowering and senescence. In contrast, selection at low CO2 resulted in an average 35% increase in biomass production, due to an increase in the length of the life cycle that resulted in a longer period for biomass accumulation before senescence. From the Arabidopsis model system we conclude that some C3 annuals may have produced greater biomass in response to low pCO2 during the Pleistocene relative to what has been predicted from studies exposing a single generation of C3 plants to low pCO2. Furthermore, C3 annuals may exhibit evolutionary responses to high pCO2 in the future that may result in developmental changes, but these are unlikely to increase biomass production. This series of studies shows that CO2 may potentially act as a selective agent on C3 annuals, producing changes in development rate and carbon accumulation that could not have been predicted from single-generation studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...