Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 160 (1993), S. 152-157 
    ISSN: 1432-072X
    Keywords: Thiothrix ramosa ; Chemolithoautotrophy ; Chemostat ; Ribulose bisphosphate carboxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Thiothrix has been shown for the first time to be able to grow chemolithoautotrophically with thiosulphate or carbon disulphide as sole energy substrate. Thiosulphate served as the growth-limiting substrate for Thiothrix ramosa in chemostat culture. Maximum growth yield (Ymax) from yields at growth rates between 0.029–0.075 h-1 was 4.0 g protein/mol thiosulphate oxidized. The key enzyme of the Calvin cycle, ribulose 1,5-bisphosphate carboxylase, was present in these cells, as were rhodanese, adenylyl sulphate (APS) reductase and ‘sulphur-oxidizing enzyme’. Thiosulphate-grown cells oxidized thiosulphate, sulphide, tetrathionate and carbon disulphide. Oxidation kinetics for sulphide, thiosulphate and tetrathionate were biphasic: oxygen consumption during the fast first phase of oxidation indicated oxidation of sulphide, and the sulphane moieties of thiosulphate and tetrathionate, to elemental sulphur, before further oxidation to sulphate. Kinetic constants for these four substrates were determined. T. ramosa also grew mixotrophically in batch culture on lactate with a number of organic sulphur compounds: carbon disulphide, methanethiol and diethyl sulphide. Substituted thiophenes were also used as sole substrates. The metabolic versatility of T. ramosa is thus much greater than previously realised.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 149 (1988), S. 317-323 
    ISSN: 1432-072X
    Keywords: Thiobacillus acidophilus ; Mixotrophy ; Chemostat culture ; Glucose oxidation ; Tetrathionate oxidation ; Ribulose bisphosphate carboxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Thiobacillus acidophilus can grow in batch and chemostat culture as a heterotroph on glucose, a chemolithoautotroph on tetrathionate and CO2, or as a mixotroph. Mixotrophically it obtains energy from the simultaneous oxidation of tetrathionate and glucose, and carbon from both glucose and CO2. Mixotrophic cultures contain lower activities of ribulose 1,5-bisphosphate carboxylase and exhibit lower specific rates of tetrathionate oxidation than do autotrophic cultures. Mixotrophic cultures with low concentrations of glucose have growth rates that are intermediate between slow autotrophic growth and fast heterotrophic growth. Slightly more glucose-carbon is assimilated by mixotrophic cultures than by heterotrophic ones provided with the same concentrations of glucose. Mixotrophic yield in the chemostat is also slightly greater than predicted from autotrophic and heterotrophic yields. These observations indicate that there is preferential assimilation of glucose, at the expense of energy from tetrathionate oxidation, during mixotrophy, resulting in an overall “energy saving” that produces enhanced growth yield. These observations are relevant to understanding the regulatory behaviour of T. acidophilus in its acidic, mineral-leaching habitats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...