Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Aluminum ; Growth ; Tip growth ; Ion transport ; Limnobium ; Root hair
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The magnitude and spatial localization of Ca2+, K+ and H+ fluxes in growing and non-growing Limnobium stoloniferum root hairs was determined using non-invasive, ion-selective vibrating microelectrodes. Both the spatial pattern and magnitude of the ionic flux was dependent on the particular ion in question. Both H+ and Ca2+ influx was localized almost exclusively to the tips of growing root hairs, suggesting that these fluxes may be involved in directing growth. Influx of K+ showed no distinct localization and uptake appeared uniform along the length of the root hair. Competitive inhibition of Ca2+ influx using a range of Mg+ concentrations indicated that the magnitude of the Ca2+ flux entering the root hair tip did not determine growth rate; however, the presence of Ca2+ on the external face of the membrane was implicit for root hair integrity. Aluminum proved to be a potent inhibitor of root hair growth. At an exogenous Al concentration of 20 μM a complete blockage of Ca2+ influx into root hair tips was observed, suggesting that Al blockage of Ca2+ influx could be involved in Al toxicity. However, at a lower Al concentration (2 μM), Ca2+ fluxes were unaffected while inhibition of growth was still observed along with a distinct swelling of the root hair tip. The swelling at the root hair tips was identical in appearance to that seen in the presence of microtubule inhibitors, suggesting that Al could influence a number of different sites at the plasma-membrane surface and within the cell. The possible role(s) of Ca2+ and H+ fluxes in directing tip growth are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Key words: Aluminum ; Arabidopsis (Al toxicity) ; Cytoplasmic calcium ; Mutant (Arabidopsis ; Al sensitivity) ; Root hair ; Touch
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Aluminum inhibition of root growth is a major world agricultural problem where the cause of toxicity has been linked to changes in cellular calcium homeostasis. Therefore, the effect of aluminum ions (Al) on changes in cytoplasmic free calcium concentration ([Ca2+]c) was followed in root hairs of wild-type, Al-sensitive and Al-resistant mutants of Arabidopsis thaliana (L.) Heynh. Generally, Al exposure resulted in prolonged elevations in tip-localized [Ca2+]c in both wild-type and Al-sensitive root hairs. However, these Al-induced increases in [Ca2+]c were not tightly correlated with growth inhibition, occurring up to 15 min after Al had induced growth to stop. Also, in 32% of root hairs examined growth stopped without a detectable change in [Ca2+]c. In contrast, Al-resistant mutants showed little growth inhibition in response to AlCl3 exposure and in no case was a change in [Ca2+]c observed. Of the other externally applied stresses tested (oxidative and mechanical stress), both were found to inhibit root hair growth, but only oxidative stress (H2O2, 10 μM) caused a prolonged rise in [Ca2+]c similar to that induced by Al. Again this increase occurred after growth had been inhibited. The lack of a tight correlation between Al exposure, growth inhibition and altered [Ca2+]c dynamics suggests that although exposure of root hairs to toxic levels of Al causes an alteration in cellular Ca2+ homeostasis, this may not be a required event for Al toxicity. The elevation in [Ca2+]c induced by Al also strongly suggests that the phytotoxic action of Al in root hairs is not through blockage of Ca2+-permeable channels required for Ca2+ influx into the cytoplasm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...