Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1528
    Keywords: Rubber ; devulcanization ; revulcanization ; ultrasound ; cavitation ; viscosity ; model ; experiment ; mechanical properties ; gel fraction ; crosslink density ; pressure drop ; converging flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Continuous ultrasonic devulcanization of ground tire rubber (GRT) and styrene-butadiene rubber (SBR) is considered. Experiments are performed under various processing conditions. Two recipes of SBR with different amounts of polysulfidic linkages are utilized. Gel fraction and crosslink density of devulcanized rubbers are measured and a unique relationship between them is established. Die characteristics with and without imposition of ultrasonic waves are determined. Devulcanized samples are revulcanized and mechanical properties are measured. In some cases, properties of revulcanized SBR samples exceeded those of virgin vulcanizates. This is explained based on the presence of a double network in the revulcanized rubber. A modification of acoustic cavitation and flow modeling of ultrasonic devulcanization of SBR and GRT is proposed using a concept of effective viscosity characterizing the flow of vulcanized particles before devulcanization combined with a shear rate, temperature and gel fraction-dependent viscosity of devulcanized rubber. Velocity, shear rate, pressure, and temperature field along with gel fraction, crosslink density and number of bonds broken are simulated. Predicted data on gel fraction, crosslink density, and pressure using the present modification of the model are found to be closer to experimental data then previously reported.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 7 (1996), S. 599-603 
    ISSN: 1042-7147
    Keywords: polyaniline ; electrical conductivity ; dodecylbenzene sulfonic acid ; doping ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Polyaniline-dodecylbenzene sulfonic acid (PAn-DBSA) complex was thermally treated and its conductivity and structure change were investigated. The conductivity increased linearly from 1.1 × 10-4 to 3.0 × 10-1 S/cm on thermal heating until 140°C, but decayed above 200°C. The increase was caused by an additional thermal doping resulting from an increasing mobility of undoped dopants. After the thermal doping, the formation of the layered structure of PAn-DBSA is made. The decrease was caused by the thermal decomposition of dopants. The conductivity changes at a high temperature was strongly dependent on the nature of the dopant. The results were confirmed by means of X-ray patterns and Fourier transform infrared spectra obtained in the heating and cooling processes of polyaniline.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...