Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 27 (1998), S. 255-262 
    ISSN: 1432-1017
    Keywords: Key words Coupling stoichiometry ; Electrogenicity ; Slip ; Calcium pumping ; Proton ejection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract A non-equilibrium thermodynamics (NET) model describing the action of completely coupled or `slipping' reconstituted Ca2+-ATPase is presented. Variation of the coupling stoichiometries with the magnitude of the electrochemical gradients, as the ATPase hydrolyzes ATP, is an indication of molecular slip. However, the Ca2+ and H+ membrane-leak conductances may also be a function of their respective gradients. Such non-ohmic leak typically yields `flow-force' relationships that are similar to those that are obtained when the pump slips; hence, caution needs to be exercised when interpreting data of Ca2+-ATPase-mediated fluxes that display a non-linear dependence on the electrochemical proton (Δµ˜H) and/or calcium gradients (Δµ˜Ca). To address this issue, three experimentally verifiable relationships differentiating between membrane leak and enzymic slip were derived. First, by measuring Δµ˜H as a function of the rate of ATP hydrolysis by the enzyme. Second, by measuring the overall `efficiency' of the pump as a function of Δµ˜H. Third, by measuring the proton ejection rate by the pump as a function of its ATP hydrolysis rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0749-503X
    Keywords: Glucose-transport ; rapid-kinetics ; S. cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Incubation of starved galactose-grown S. cerevisiae cells with cyanide reduced glucose uptake as measured over a 5-s period. The Vmax for glucose uptake was decreased by over a factor of two but the apparent affinity for glucose doubled. When measured in the sub-second time scale, however, there was no significant inhibition of glucose uptake, by cyanide, up to 200-ms, clearly demonstrating that, in cyanide treated cells, glucose uptake was not linear for the first 5-s.After a 200-ms exposure of untreated cells to radio-labelled glucose, less than 10% of the intracellular label resided in soluble uncharged compounds. In cyanide-treated cells up to 43% of the labelled compounds were uncharged, with a concurrent reduction of intracellular label residing in anionic compounds. The results suggest that, in the presence of 10 mM cyanide when respiration is inhibited, a reduction in the cellular ATP concentration causes a reduction in hexose-kinase activity which results in an accumulation of internal free glucose, which in turn causes a reduction in net glucose transport.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...