Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 543-555 
    ISSN: 0197-8462
    Keywords: broadband irradiation ; short pulses ; tissue dispersion ; induced currents ; SARs ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: The finite-difference time-domain (FDTD) method has been used to calculate SARs and induced currents involving whole-body or partial-body exposures of models to spatially uniform or nonuniform (far-field or near-field), to sinusoidally varying EM fields, or to transient fields such as those associated with electromagnetic pulses. However, a weakness of the FDTD algorithm is that the dispersion of the tissue's dielectric properties is ignored and frequency-independent properties are assumed. Although this is permissible for continuous-wave or narrow-band irradiation, the results may be highly erroneous for short pulses, in which ultra-wide bandwidths are involved. In some recent publications, procedures are described for one- and two-dimensional problems for media in which the complex permittivity ∊ * (ω) may be described by a single-order Debye relaxation equation or a modified version thereof. These procedures based on a convolution integral describing D(t) in terms of E(t) cannot be extended to human tissues for which multiterm Debye relaxation equations must generally be used.We describe here a new differential-equation approach that can be used for general dispersive media. We illustrate the use of this approach by one- and three-dimensional examples of media for which ∊ * (ω) is given by a multiterm Debye equation, and for an approximate two-thirds muscle-equivalent model of the human body. Based on a single run involving a Gaussian pulse, the frequency-dependent FDTD [(FD)2TD] method allows calculations of SARs and induced currents at various frequencies by taking the Fourier components of the induced E fields. The (FD)2TD method can also be used to calculate coupling of the short (ultra-wideband) pulses to the human body. 1992 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...