Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Ribosomal protein genes ; CYH2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A diploid strain of the yeast Saccharomyces cerevisiae has been constructed that has one copy of the ribosomal protein gene CYH2 completely deleted and replaced with the TRP1 gene using the method of Rothstein (1983). There are only small differences in growth rate and no detectable difference in steady state level of CYH2 mRNA between the diploid that is heterozygous for the CYH2 deletion and the parent diploid with two normal copies of this gene. This suggests that the diploid must partially compensate for the loss of one CYH2 gene. Tetrad dissection shows that haploid spores lacking the CYH2 gene cannot germinate. The lethality of this deletion can be rescued by a CYH2 cDNA on a low copy vector. Haploids which lack the genomic copy of the CYH2 gene, but contain a plasmid copy of the CYH2 cDNA are able to grow normally. These CYH2 deleted yeast haploids should be useful to analyze mutationally altered CYH2 genes and genes homologous to CYH2 from other organisms without interference from a genomic copy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 11 (1987), S. 445-450 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Ribosomal protein genes ; Genetic mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have used the 2 μ mapping method described by Falco and Botstein (1983) and tetrad analysis to map four ribosomal protein genes (two linked pairs) in S. cerevisiae. One pair (rp28–rp55 copy 1) is on chromosome XV, 14 cM proximal to ARG8. The other pair (rp55–rp28 copy 2) is 19 cM from the centromere on the left arm of chromosome XIV. To map copy 1 we used the E. coli β-galactosidase gene rather than a yeast gene to mark the ribosomal protein chromosomal locus. This provided a more sensitive color screening assay for chromosome loss in the 2 μ method. It also removed the restriction that the mapping tester strains must be mutant for the plasmid marker.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 234 (1992), S. 22-32 
    ISSN: 1617-4623
    Keywords: cis-acting elements ; Saccharomyces cerevisiae ; Transcriptional regulation ; Ribosomal protein genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Previous work in our laboratory has shown that the 5′ nontranscribed promoter region of the gene for ribosomal protein (rp) S16A-1 of Saccharomyces cerevisiae, when fused to a lacZ gene, is necessary and sufficient to cause an increase in expression of the heterologous lacZ gene fusion product after cells have been shifted from a glycerol to glucose carbon source. This increase in expression is characteristic of that observed with the native rp gene. We have sought to define more precisely those areas of the promoter that may be involved in the differential expression/regulation of RPS16A-1 when host cells are subjected to a variety of nutritional environments. It has already been demonstrated by others that the promoter regions of most rp genes contain at least one consensus element, designated UASrpg, which is necessary for the transcriptional activation and maintenance of expression of the gene during steady-state growth in rich media. Our main experimental approach has been to create a series of 5′ end deletions in the promoter region of RPS16A-1. The individual truncated promoter fragments were then ligated to a lacZ fusion reporter construct. By assaying the cells for production of β-galactosidase and determining the abundance of lacZ mRNA, we have been able to determined the extent of fusion product expression. We assayed cells under three physiological conditions: steady-state growth in glucose, steady-state growth in glycerol and during sporulation. We report four main findings of our work.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: Brassica napus ; complementation ; DNA polymerase δ ; DNA replication ; proliferating cell nuclear antigen (PCNA) ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA encoding the proliferating cell nuclear antigen (PCNA) from Brassica napus (oilseed rape) was shown to complement the lethal deletion mutation in the PCNA gene (ΔPOL30) of Saccharomyces cerevisiae. We provide unequivocal evidence that the B. napus PCNA can perform all the essential functions of the yeast PCNA in DNA replication, although some species-specific differences may exist. In addition, the B. napus PCNA expressed as a fusion polypeptide with glutathione S-transferase (GST) was shown to stimulate the activity and processivity of two δ-like DNA polymerases from wheat in vitro. These experiments provide direct biochemical evidence that the B. napus PCNA may function as an auxiliary factor in plant cell DNA replication.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 801-810 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; autoselection ; plasmid stability ; cloned gene expression ; medium enrichment ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Saccharomyces cerevisiae autoselection strains with mutations in the ura3, fur1, and urid-k genes have been obtained through a sequential isolation procedure. This autoselection system is an extension of one described by Loison et al. The mutations effectively block both the pyrimidine biosynthetic and salvage pathways and in combination are lethal to the host. Therefore, a plasmidencoded URA3 gene is essential for cell viability regardless of the growth conditions, and complex (traditionally nonselective) media can be employed without the risk of plasmid loss. The effects of medium enrichment on growth and cloned gene product synthesis were examined in batch culture for two autoselection strains. The plasmid gene product β-galactosidase was under the control of the yeast GAL1 promoter, and two methods of induction were employed; one strain was induced via temperature shift while the other was induced by galactose addition. Three nutrient media were investigated: a lean selective medium (SD), a richer semidefined medium (SDC), and a rich complex medium (YPD). The results demonstrated the improvements in cloned gene productivity possible when the growth medium is enriched, with up to 10-fold increases in β-galactosidase productivity observed. Plasmid instability and mutation reversion were not problems for the autoselection strains, even in uracil-containing medium. Short-term plasmid stabilities were approximately 90% in all three media tested. During continuous culture of the autoselection temperature-sensitive strain, long-term plasmid stability was excellent and β-galactosidase expression remained high after more than 25 residence times under inducing conditions. In contrast, both β-galactosidase specific activity and plasmid stability decreased linearly with time for an analogous nonautoselection strain. The introduced fur1 and uridk mutations were very stable; after more than 50 generations of growth in complex medium, stability values of 99-100% were measured. © 1993 Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 95-102 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; secretion ; MFα1 ; autoselection ; plasmid stability ; medium enrichment ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Two Saccharomyces cerevisiae strains were employed to investigate the effects of medium enrichment on the expression and secretion of a recombinant protein. One was a stable autoselection strain with mutations in the ura3, fur1, and urid-k genes. The combination of these three mutations blocks both the pyrimidine nucleotide biosynthetic and salvage pathways and is lethal to the cells. Retention of the plasmid, which carries a URA3 gene, was essential for cell viability. Therefore, all media were selective, allowing cultivation of the strain in complex medium. The second strain was a nonautoselection (control) strain and is isogenic to the first except for the fur1 and urid-k mutations. The plasmid utilized contains the yeast invertase gene under the control of the MFα1 promoter and leader sequence. The expression and secretion of invertase for the autoselection strain were examined in batch culture for three media: a minimal medium (SD), a semidefined medium (SDC), and a rich complex medium (YPD). Biomass yields and invertase productivity (volumetric activity) increased with the complexity of the medium; total invertase volumetric activity in YPD was 100% higher than in SDC and 180% higher than in SD. Specific activity, however, was lowest in the SDC medium. Secretion efficiency was extremely high in all three media; for the majority of the culture, 80-90% of the invertase was secreted into the periplasmic space and/or culture medium. A glucose pulse at the end of batch culture in YPD facilitated the transport of residual cytoplasmic invertase. For the nonautoselection strain, invertase productivity did not improve as the medium was enriched from SDC to YPD, and plasmid stability in the complex YPD medium dropped from 54% to 34% during one batch fermentation. During long-term sequential batch culture in YPD, invertase activity decreased by 90% and the plasmid-containing fraction dropped from 56% to 8.8% over 44 generations of growth. The expression level for the autoselection strain, however, remained high and constant over this time period, and no reversion at the fur1 or urid-k locus was observed. © 1993 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 45-51 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; δ sequences cloned genes ; integration ; stability ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The chromosomal δ sequences of the yeast Saccharomyces cerevisiae were employed as recombination sites to integrate the bacterial neor gene and the yeast SUC2 gene into the yeast genome. A dominate selection method employing the aminoglycoside antibiotic G418 was used. Transformation efficiencies and growth behaviors of the transformants were studied. Transformants were obtained with more than 40 integrations; the majority of insertions were tandem with a maximum of three different insertion sites utilized at one time. After 70-100 generations of growth in nonselective medium, the high copy number SUC2-neor integrants were found to be unstable; only minor instability was observed for the neor and low copy number SUC2-neor integrants. © 1996 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 703-712 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; Ty3 retrotransposon ; cloned gene integration ; stability ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The Ty3 retrotransposon of Saccharomyces cerevisiae was employed for the site-specific integration of heterologous genes into the yeast genome. A GAL-regulated promoter allowed induction of the retrotransposition process, and a bacterial neor gene inserted in the Ty3 element was used as a selectable model heterologous gene. The frequency of transposition of this neor-marked element was found to be comparable to that of an unmarked element. Three amplification systems were constructed; the systems varied with respect to the location and number of the GAL-regulated helper and neor-marked Ty3 elements. For all three systems, neor integrations were readily selected with a maximum of two insertions obtained per round of amplification. A sequential amplification strategy was effective for further increasing the number of integrated cloned genes, and families of strains varying by only one neor insertion were easily obtained. Resistance to the antibiotic G418 correlated well with the number of integrated neor genes, and Northern blots verified the relationship between cloned gene number (up to four) and neor expression. Structural stability of the integrated genes was also demonstrated. By controlling the number of rounds of amplification and the level of G418 selection, precise numbers of integrated heterologous genes could be obtained. Because the amplification process can be repeated using different cloned genes inserted in the Ty3 element, these results demonstrate the potential of retrotransposition for the regulated integration of a series of different genes at nondeleterious chromosomal locations.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...