Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    BioMetals 2 (1989), S. 45-49 
    ISSN: 1572-8773
    Keywords: Siderophore production ; Siderophore utilization ; Rhizobium trifolii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Several strains ofRhizobium trifolii were tested for their ability to synthesize and utilize phenolate or hydroxamate types of siderophores. None of the nodulating strains ofR. trifolii was able to produce detectable amounts of siderophores. Only the non-nodulating strainR. trifolii AR6 formed a phenolate siderophore, which stimulated the growth of the siderophore-negative mutant AR65. Other strains ofR. trifolii could not utilize iron from exogenously supplied Desferal, pseudobactin or citrate. The siderophore fromR. trifolii AR6 and 2,3-dihydroxybenzoic acid slightly stimulated the growth of someR. trifolii strains.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 130 (1981), S. 322-324 
    ISSN: 1432-072X
    Keywords: Lignobacter ; Salmonella typhimurium ; Escherichia coli ; Nif plasmid ; Tn9 ; Transduction ; Transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lignobacter strain K17 is able to degrade aromatic compounds and to fix atmospheric nitrogen. It was proved that capacity for nitrogen fixation by Lignobacter was plasmid mediated. Plasmid pUCS100 (17.5 Mdal) carrying nif genes was transferred from Lignobacter to Escherichia coli SK1592 and Salmonella typhimurium. The transposon Tn9 was translocated to pUCS100 to facilitate selection of Nif+ bacteria. E. coli SK1592 harboring the new plasmid (pUCS101) reduced acetylene under anaerobic conditions. Plasmids pUCS100 and pUCS101 were not stably maintained in E. coli and S. typhimurium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...