Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Somatosensory thalamus ; Vibrotactile sensation ; Tactile neurons ; Vibration coding ; Glabrous skin ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Responses of neurons in the ventroposterolateral nucleus of the thalamus to vibration applied to the forelimb footpads were analyzed in anesthetized cats in order to describe the signalling properties of thalamic neurons that received input from the different classes of tactile afferents innervating the glabrous skin of the distal forelimb. Seventy-six thalamic neurons, the majority of which (60 of 76) were positively identified as thalamocortical projection neurons, were classified into two broad groups according to their responses to 1-s step indentations of the skin. A minority (24%) comprised neurons that had slowly adapting (SA) responses, whereas the remainder (76%), the dynamically sensitive neurons, had transient responses to the onset and offset phase of the step and were further classified according to their sensitivity to cutaneous vibrotactile stimuli into those activated by low-frequency vibration (rapidly adapting, RA, neurons) and those activated by high frequencies (Pacinian afferent, PC, neurons). Thalamic RA neurons displayed phaselocked responses to vibration at frequencies up to ∼100 Hz, while PC neurons displayed phaselocked responses to vibration up to 400–500 Hz. Thalamic SA neurons varied in their responses to vibrotactile stimuli; half were most sensitive to vibration frquencies of 50 Hz or less, while the others responded over a broader range of frequencies. Although three major classes of footpad-related thalamic neurons were identified, there was evidence of convergent input to a small proportion of them. The study demonstrates that thalamic neurons have the capacity for responding to cutaneous vibration with phaselocked, patterned impulse trains, which would enable them to encode information about vibrotactile frequencies up to ∼ 300 Hz.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Corticothalamic modulation ; Ventroposterolateral thalamus ; Primary and secondary somatosensory cortex (SI and SII) ; Somatosensory thalamus ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The influence of the corticothalamic projections from somatosensory areas I and II (SI and SII) on the transmission of tactile information through the ventroposterolateral (VPL) thalamus was investigated by examining the effects of cooling-induced, reversible inactivation of SI and/or SII on the responsiveness of 32 VPL neurons to controlled tactile stimulation of the distal forelimb in anaesthetized cats. Both the response levels and spontaneous activity were unaffected in 21 (66%) of the VPL neurons as a result of inactivation of SI or SII singly, or both SI and SII simultaneously. In the remaining 11 neurons, 10 displayed a reduction in response level, an effect observed over the whole of the stimulus-response relations for the neurons studied at different stimulus amplitudes, and one neuron displayed an increase in response level in association with cortical inactivation. When responses in VPL neurons were affected by inactivation of one cortical somatosensory area, they were not necessarily affected by inactivation of the other. Of 14 neurons studied for the effects of the separate inactivation of SI alone and of SII alone, 7 were affected, one from both areas, but the remaining 6 were affected by inactivation of only one of these areas. Phaselocking, and therefore the precision of impulse patterning in the responses of VPL neurons to skin vibration, was unchanged by the cortical inactivation irrespective of whether the response level was affected. The results suggest that SI and SII may exert a facilitatory influence on at least a third of VPL neurons and in this way may modulate the gain of transmission of tactile signalling through the thalamus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...