Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Striate cortex ; Modular organization ; Plasticity ; Platyrrhini ; Ocular dominance ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We have studied the tangential distribution of cytochrome oxidase (cytox)-rich patches in striate cortex of normal and monocularly enucleated Cebus apella monkeys. Patch spatial density and patch cross-sectional area were analysed in cytox-reacted tangential sections of flat-mounted preparations of V1. In the upper cortical layers of V1, and specially in the middle of layer III, the Cebus has well-delimited cytox-rich patches. Rows of patches are less conspicuous in Cebus than in Old World monkeys. The spatial density of patches is nearly constant throughout the binocular field representation in V1, with a mean value of 4 patches per mm2. In the monocular portions of V1, however, patch spatial density diminishes. In most cases, mean patch cross-sectional area decreases slightly towards the representation of the periphery in V1. However, patches in the representation of the monocular crescent tend to be larger than those in the adjacent binocular representation. The small variation of cytox patch topography with eccentricity contrasts with the large variation of cortical point-image size in V1. In monocularly enucleated monkeys, patches are larger and darker above and below the ocular dominance stripes of the remaining eye than in the alternate stripes. After long-term enucleation, the patches corresponding to the remaining eye columns appeared larger than in normal controls. In contrast, there is no difference in size between the patches located in the deprived and undeprived monocular crescent representations, although both patch and interpatch regions are darker staining in the latter. These results suggest the existence of competitive interactions which modify the cortical intrinsic organization even in adult monkeys.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Striate cortex ; Modular organization ; Orientation selectivity ; Primates ; Platyrrhini ; Evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The representation of the two eyes in striate cortex (V1) ofCebus monkeys was studied by electrophysiological single-unit recordings in normal animals and by morphometric analysis of the pattern of ocular dominance (OD) stripes, as revealed by cytochrome oxidase histochemistry in V1 flat-mounts of enucleated animals. Single-unit recordings revealed that the large majority of V1 neurons respond to the stimulation of either eye but are more strongly activated by one of them. As in other species of monkey, neurons with preference for the stimulation of the same eye are grouped in columns 300–400 µm wide, spanning all cortical layers. Monocular neurons are clustered in layer IVc, specially in its deeper half (IVc-beta), and constitute less than 10% of the population of other layers. Neurons with equal responses to each eye are more commonly found in layer V than elsewhere in V1. In the supragranular layers and in granular layer IVc-alpha neurons strongly dominated by one of the eyes tend to be broadly tuned for orientation, while binocularly balanced neurons tend to be sharply tuned for this parameter. No such correlation was detected in the infragranular layers, and most neurons in layer IVc-beta responded regardless of stimulus orientation. Ocular dominance stripes are present throughout most of V1 as long, parallel or bifurcating bands alternately dominated by the ipsi- or the contralateral eye. They are absent from the cortical representations of the blind spot and the monocular crescent. The domains of each eye occupy nearly equal portions of the surface of binocular V1, except for the representation of the periphery, where the contralateral eye has a larger domain, and a narrow strip along the border of V1 with V2, where either eye may predominate. The orderliness of the pattern of stripes and the relationship between stripe arrangement and the representation of the visual meridians vary with eccentricity and polar angle but follow the same rules in different animals. These results demonstrate that the laminar, columnar and topographic distribution of neurons with different degrees of OD in V1 is qualitatively similar in New- and Old World monkeys of similar sizes and suggest that common ancestry, rather than parallel evolution, may account for the OD phenotypes of contemporaneous simians.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...