Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Thermal stability  (1)
  • monoamine oxidase  (1)
  • neurons  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Biomembranes 942 (1988), S. 333-340 
    ISSN: 0005-2736
    Keywords: (Human blood) ; Erythrocyte membrane ; Spectrin thiol ; Thermal stability
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6903
    Keywords: Astrocytes ; cerebellum ; glutamate ; granule cells ; monoamine oxidase ; phenylethylamine ; serotonin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Activities of monoamine oxidase (MAO) A and B were measured during the first month of postnatal development in mouse cerebellum and in primary cultures of either cerebellar granule cells or cerebellar astrocytes, derived from 7-day-old cerebella. In addition, effects of the two monoamines, serotonin (a MAO A substrate) and phenylethylamine (a MAO B substrate) on the release of glutamate under resting conditions and in a transmitter related fashion (i.e., potassium-induced, calcium-dependent glutamate release) were studied during the same period. Both MAO A and MAO B activities increased during in vivo development (beginning around postnatal day 14) and in cultured astrocytes (during a comparable time period and to a similar extent), but remained constant at a low level in granule cells. In 4-day-old cerebellar granule cell cultures there was no potassium-induced glutamate release but serotonin as well as phenylethylamine reduced the release in both the presence and absence of excess potassium. In 8- and 12-day-old granule cell cultures and in 8- and 18-day old astrocyte cultures there was a pronounced glutamate release during superfusion with 50 mM K+. In both neurons and astrocytes this response was inhibited by 1 nM of either serotonin or phenylethylamine. In the astrocytes the inhibition was followed by an increased release of glutamate in both the presence and absence of the high potassium concentration, whereas the 8-day-old neurons showed only a slight increase in glutamate release after the with-drawal of the monoamine and only in the absence of excess potassium. The response was almost identical in 8-and 18-day-old astrocytes in spite of the marked difference in MAO activities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-6903
    Keywords: Glutamate metabolism ; astrocytes ; neurons ; effects of ammonia and β-methylene-dl-aspartate ; aspartate aminotransferase ; malate-aspartate shuttle ; aspartate ; glutamine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of ammonium chloride (3 mM) and β-methylene-dl-aspartate (BMA; 5 mM) (an inhibitor of aspartate aminotransferase, a key enzyme of the malate-aspartate shuttle (MAS)) on the metabolism of glutamate and related amino acids were studied in primary cultures of astrocytes and neurons. Both ammonia and BMA inhibited14CO2 production from [U-14C]-and [1-14C]glutamate by astrocytes and neurons and their effects were partially additive. Acute treatment of astrocytes with ammonia (but not BMA) increased astrocytic glutamine. Acute treatment of astrocytes with ammonia or BMA decreased astrocytic glutamate and aspartate (both are key components of the MAS). Acute treatment of neurons with ammonia decreased neuronal aspartate and glutamine and did not apparently affect the efflux of aspartate from neurons. However, acute BMA treatment of neurons led to decreased neuronal glutamate and glutamine and apparently reduced the efflux of aspartate and glutamine from neurons. The data are consistent with the notion that both ammonia and BMA may inhibit the MAS although BMA may also directly inhibit cellular glutamate uptake. Additionally, these results also suggest that ammonia and BMA exert differential effects on astroglial and neuronal glutamate metabolism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...