Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Thermally stimulated currents  (1)
  • blends, polyethersulfone/polyimide, thermal and rheological properties of  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 266 (1988), S. 701-715 
    ISSN: 1435-1536
    Keywords: Thermally stimulated currents ; composites ; humidity effect ; polyethylene/CaCO3 ; dielectric properties
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The dielectric properties of composite samples prepared by polymerizing ethylene on the surface of filler are compared to those of mechanical mixtures consisting of CaCO3 and ultra high molecular weight polyethylene. After presenting the normalized master curves of AC dispersion and loss measured at different relative humidities, the field strength dependence of the 50 Hz AC and DC responses were studied. With one exception, the effect is small. Thermally stimulated polarization (TSP) and depolarization (TSD) curves are presented; the peak appearing on the TSP curves of the samples stored under ambient conditions is interpreted as a result of water desorption. The high temperature DC conductivity and the depolarization current density are higher in the composites and mechanical mixtures than in the matrix. The dielectric properties of the wet filler particles were calculated from the measured composite and matrix data using various mixture formulae. The results can be understood and interpreted if the dielectric properties of adsorbed water are described by the cluster theory of dielectric relaxation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 30 (1992), S. 465-476 
    ISSN: 0887-6266
    Keywords: blends, polyethersulfone/polyimide, thermal and rheological properties of ; polyethersulfone in miscible blends with polyimide ; polyimide in miscible blends with polyethersulfone ; rheology of polyethersulfone/polyimide blends ; thermal properties of polyethersulfone/polyimide blends ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Blends of an aromatic polyethersulfone (commercial name Victrex) and a polyimide (commercial name Matrimid 5218), the condensation product of 3,3′,4,4′-benzophenone tetracarboxylic dianhydride and 5(6)-amino-1-(4′-aminophenyl)-1,3,3′-trimethylindane, were studied by differential scanning calorimetry, dynamic mechanical analysis, and rheological techniques. The blends appeared to be miscible over the whole range of compositions when cast as films or precipitated from solution in a number of solvents. After annealing above the apparent phase boundary, located above Tg, the blends were irreversibly phase separated indicating that the observed phase boundary does not represent a true state of equilibrium. Only a narrow “processing window” was found for blends containing up to 20 wt % polyimide. Rheological measurements in this range of compositions indicated that blending polyethersulfone with polyimide increases the complex viscosity and the elastic modulus of the blends. For blends containing more than 10 wt % polyimide, abrupt changes in the rheological properties were observed at temperatures above the phase boundary. These changes may be consistent with the formation of a network structure (due to phase separation and/or crosslinking). Blends containing less than 10 wt % polyimide exhibited stable rheological properties after heating at 320°C for 20 min, indicating the existence of thermodynamic equilibrium.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...