Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 24 (1993), S. 139-149 
    ISSN: 0886-1544
    Keywords: growth factor ; phosphatidylinositol cycle ; actin polymerization ; fluorescence microscopy ; cytochalasin D ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The addition of platelet-derived growth factor (PDGF) to serum-starved fibroblasts induces increased motility, formation of lamellipodia, increased ruffling activity, and actin ring structures associated with dorsal ruffles. Involvement of the phosphatidylinositol cycle (PI-cycle) in these morphological changes was investigated by observing the effects of neomycin, an inhibitor of the PI-cycle, on cultured human foreskin fibroblasts. The role of actin in the changes was investigated by using cytochalasin D (CD). Actin in detergent-extracted cells was labelled with TRITC-phalloidin and examined with fluorescence microscopy. Using PDGF and neomycin simultaneously potentiated lamellipodia formation, ruffling activity, as well as the number of cells with actin rings. Furthermore, neomycin by itself induced morphological changes similar to those induced by PDGF. Quantitation of actin rings showed dose and time dependency for PDGF and neomycin respectively, with a maximal number of cells containing rings after 15 min of exposure to either 3.5 mM neomycin or 10 ng PDGF/ml. Comparing the two substances, PDGF induced ring formation in a greater number of cells. These processes were inhibited by the presence of CD. PDGF- and neomycin-induced changes in the actin cytoskeleton were also observed in human embryonic lung fibroblasts, human glial cells, and embryonic mouse fibroblasts, all of which are known to express PDGF-receptors. In conclusion, the present study indicates that an increased turnover of the PI-cycle is not essential for the changes in actin organization induced by PDGF. © 1993 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0741-0581
    Keywords: Cytoskeleton ; Scanning and transmission electron microscopy ; Detergent extraction ; Thin metal films ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: This paper describes the use of sputter coating to prepare detergent-extracted cytoskeletons for observation by scanning (SEM), scanning transmission (STEM), inverted contrast STEM, and transmission (TEM) electron microscopy. Sputtered coats of 1-2 nm of platinum or tungsten provide both an adequate secondary electron signal for SEM and good contrast for STEM and TEM. At the same time, the grain size of the coating is sufficiently fine to be just at (platinum) or below (tungsten) the limit of resolution for SEM and STEM. In TEM, the granular structure of platinum coats is resolved, and platinum decoration artifacts are observed on the surface of structures. The platinum is deposited as small islands with a periodic distribution that may reveal information about the underlying molecular structure. This method produces samples that are similar in appearance to replicas prepared by low-angle rotary shadowing with platinum and carbon. However, the sputter-coating method is easier to use; more widely available to investigators; and compatible with SEM, STEM, and TEM. It may also be combined with immunogold and other labeling methods. While TEM provides the highest resolution images of sputter-coated cytoskeletons, it also damages the specimens owing to heating in the beam. In SEM and STEM cytoskeletons are stable and the resolution is adequate to resolve individual microfilaments. The best single method for visualizing cytoskeletons is inverted contrast STEM, which images both the metal-coated cytoskeletal structures and electron-dense material within the nucleus and cytoplasm as white against a dark background. STEM and TEM were both suitable for visualizing colloidal gold particles in immunolabeled samples.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...