Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 214 (1988), S. 204-212 
    ISSN: 1617-4623
    Keywords: Chlamydomonas ; Tubulin gene ; Oocyte ; Microinjection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Alpha-1 tubulin is the principal alpha-tubulin isotype found in the flagella of the unicellular green alga, Chlamydomonas reinhardii. Although the pattern of tubulin mRNA accumulation and utilization has been examined in some detail in Chlamydomonas (Lefebvre and Rosenbaum 1986), the transcriptional mechanisms establishing tubulin mRNA levels are not understood. To begin an analysis of the alpha-1 tubulin gene transcriptional control elements, we studied a number of promoter mutants of this gene from Chlamydomonas. These mutants, assayed by injection into Xenopus oocyte nuclei, delimit the promoter to 36 bp of DNA upstream of the cap site and 73 bp of the untranslated mRNA leader. A major rate-controlling element lies in a short GC-rich sequence positioned between the TATA homology and the mRNA cap site (position+1). A similar sequence motif has been found in the same position upstream of all four tubulin genes of Chlamydomonas (Brunke et al. 1984). A 10 bp linker insertion within this sequence abolishes transcription. A far upstream sequence, located in a fragment between-400 and-800, is an efficiency element, whose deletion inhibits transcription in vivo by about 30%. The upstream element (ue) also has the unique ability to drive RNA polymerase II (RNAPII) transcription in vivo when isolated from all downstream promoter elements, unlike any control element described to date. These results suggest that a sequence within the upstream element is an entry site for RNAPII into the tubulin transcription unit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 4 (1984), S. 431-441 
    ISSN: 0886-1544
    Keywords: dynein ; chromatophores ; permeabilization ; melanosomes ; motility ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Teleost chromatophores are filled with individual pigment granules that rapidly aggregate to the cell center or become dispersed throughout the cytoplasm in response to environmental stimuli. Microtubules appear to be required for pigment aggregation (movement toward the cell center), and recent findings have suggested that a dynein-like ATPase may participate in force production. Based on previous studies, however, it has been argued that pigment aggregation does not require energy directly, a view that supports the involvement of an elastic component in granule movement. To examine this point further, we have reinvestigated the energy requirements for pigment aggregation using both intact cells and detergent-permeabilized cell models of Fundulus melanophores. Poisons of oxidative phosphorylation, namely, 2,4 dinitrophenol and NaCN, reversibly inhibit melanosome aggregation in response to adrenaline. Inhibition of movement results directly from depletion of intracellular ATP, since pigment translocation can be reactivated in permeabilized cells by the addition of exogenous ATP to the lysis buffer. Non-hydrolyzable analogues, including β,γ-imidoadenosine-5′-triphosphate (AMPPNP), β,γ-methylene adenosine-5′-triphosphate (AMPPCP), and ATPγS, will not substitute for ATP in reactivation of movement. Similarly, other nucleotides such as ADP, AMP, GTP, CTP, and ITP, have limited ability to support melanosome aggregation in metabolically poisoned cells subjected to detergent lysis. ATP itself has no effect on intact cells. These results indicate that melanosome aggregation is ATP-dependent and energy-driven, and are consistent with a role for a force-transducing ATPase in particle movement.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...