Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8757
    Keywords: binary adsorption ; micropores ; nanopores ; molecular simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Monte Carlo and molecular dynamics simulations are performed to study fluid adsorption of a two component fluid in slit pores of nanoscopic dimensions. The slit pores are immersed in a binary fluid bath, which is comprised of spherical molecules having a size ratio of 1.43, at constant temperature and composition. Pore width is varied to determine how the heat capacity and self-diffusion coefficient are linked to the composition and structure of the adsorbed fluid. In pores where the fluid structure is most pronounced, we observe: perfect (or near perfect) exclusion of one component by the other component, a heat capacity that rapidly oscillates and is of greater magnitude than in the fluid bath, and self-diffusion coefficients on the order of 10−8 cm2/s. The behavior of the heat capacity and diffusion coefficients appears to arise from a near solid-like layering of OMCTS that occurs at certain favorable pore widths.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1528
    Keywords: Key words Mixed cationic surfactants ; Turbulent drag reduction ; Rheology ; Apparent extensional viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Experimental studies of the effects of mixtures of cationic surfactants on their drag reduction and rheological behaviors are reported. Cationic alkyl trimethyl quaternary ammonium surfactants with alkyl chain lengths of C12 and C22 were mixed at different molar ratios (total surfactant concentrations were kept at 5 mM with 12.5 mM sodium salicylate (NaSal) as counterion). Drag reduction tests showed that by adding 10% (mol) of C12, the effective drag reduction range expanded to 4–120 °C, compared with 80–130 °C with only the C22 surfactant. Thus mixing cationic surfactants with different alkyl chain lengths is an effective way of tuning the drag reduction temperature range. Cryo-TEM micrographs revealed thread-like micellar networks for surfactant solutions in the drag reducing temperature range, while vesicles were the dominant microstructures at non-drag reducing temperatures. High extensional viscosity was the main rheological feature for all solutions except 50% C12 (mol) solution, which also does not show strong viscoelasticity. It is not clear why this low extensional viscosity solution with relatively weak viscoelasticity is a good drag reducer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...