Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9729
    Keywords: Aroclor ; biosurfactant ; degradation of PCBs ; Pseudomonas cepacia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A bioemulsifier excreting bacterium of the species Peudomonas cepacia was isolated after a screeningprocedure using n-dodecane as carbon source. Thepartly purified bioemulsifier was preliminarily identifiedas a mixture of glycolipids. A decrease of the surfacetension to 37 mN/m and a CMC of 5 mg/l could bemeasured with the bioemulsifier GL-K12. Usingsunflower oil as main carbon source, up to 7.1 g/lbioemulsifier could be produced in oxygen and nitrogenlimited fermentations on a scale of 300 l. Thebiodegradation of Aroclor 1242 in liquid cultures by abacterial mixed population was enhanced by GL-K12when added at biosurfactant concentrations of 0.2 g/l ormore. The most positive effect was noted in thedegradation of PCB congeners with 3 Cl atoms with anincrease of up to 100%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology letters 21 (1999), S. 159-162 
    ISSN: 1573-6776
    Keywords: granules ; UASB ; resistance ; toxic chemicals ; layered structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract To investigate the effect of granular structure on resistance to toxic chemicals in UASB (Upflow Anaerobic Sludge Blanket) reactors, normal and broken granules were examined for their ability to degrade acetate with and without the addition of toluene or trichloroethylene as a toxic chemical. Without a toxic chemical, both normal and broken granules degraded the acetate at the same volumetric degradation rate (3.21 mM h−1). However, when 500 μl l−1 of toluene or trichloroethylene was added, the acetate-degradation rate of the broken granules was about a third of the rate with normal granules. Therefore, the layered structure of the UASB granules seems to give microbial populations the ability to resist toxic chemicals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...