Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Variation  (2)
  • evolution  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 63 (1982), S. 235-244 
    ISSN: 1432-2242
    Keywords: Rye ; Heterochromatin ; Variation ; Triticales
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Although Giemsa C-banding techniques have been used extensively for assaying cereal heterochromatin, a more specific technique for analyzing cereal heterochromatin has been developed recently with the isolation of DNA sequences present in heterochromatin and their employment in in situ hybridization to cereal chromosomes. A number of triticales were examined for the occurrence of modified rye chromosomes using the in situ hybridization technique. With a heterogeneous sequence probe the amount of rye heterochromatin appears to be relatively constant in wheat backgrounds but when a specific sequence probe was employed variation was observed. Whether this variation reflects polymorphism in rye or whether it is a result of adaption of the rye genome to coexistence with the wheat genome in triticales is discussed. — The triticale Rosner was examined in detail and it was established that the rye chromosome 2R had been replaced by the wheat chromosome 2D.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 63 (1982), S. 337-348 
    ISSN: 1432-2242
    Keywords: Wheat ; rDNA ; Sequence ; Populations ; Variation ; Spacer region ; Triticum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The wheat rDNA clone pTA250 was examined in detail to provide a restriction enzyme map and the nucleotide sequence of two of the eleven, 130 bp repeating units found within the spacer region. The 130 bp units showed some sequence heterogeneity. The sequence difference between the two 130 bp units analysed (130.6 and 130.8) was at 7 positions and could be detected as a 4 °C shift in Tm when heterologous and homologous hybrids were compared. This corresponded to a 1.2% change in nucleotide sequence per ΔTm of 1 °C. The sensitivity of the Tm analysis using cloned sequences facilitated the analysis of small sequence variations in the spacer region of different Triticum aestivum cultivars and natural populations of T. turgidum ssp. dicoccoides (referred to as T. dicoccoides). In addition spacer length variation was assayed by restriction enzyme digestion and hybridization with spacer sequence probes. Extensive polymorphism was observed for the spacer region in various cultivars of T. aestivum, although within each cultivar the rDNA clusters were homogeneous and could be assigned to particular chromosomes. Within natural populations of T. dicoccoides polymorphism was also observed but, once again, within any one individual the rDNA clusters appeared to be homogeneous. The polymorphism, at the sequence level (assayed by Tm analysis), was not so great as to prevent the use of spacer sequence variation as a probe for evolutionary relationships. The length variation as assayed by restriction enzyme digestion did not appear to be as useful in this regard, since its range of variation was extensive even within populations of a species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant systematics and evolution 183 (1992), S. 235-247 
    ISSN: 1615-6110
    Keywords: Angiosperms ; Mimosaceae ; Acacia ; 5S DNA ; evolution ; phylogeny ; chromosomal lineages
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The DNA sequence structure of 5S DNA units inAcacia species, including representatives from the three subgenera ofAcacia, have been determined. The data was interpreted to suggest that at least three lineages of 5S DNA sequences exist inAcacia and the proposal was made that the lineages be named5S Dna-1, 5S Dna-2, and5S Dna-3. The5S Dna-1 lineage was represented by units fromA. boliviana andA. bidwilli, the5S Dna-2 lineage by units fromA. melanoxylon, A. pycnantha, A. ulicifolia, A. boliviana, A. bidwillii, andA. albida, and the5S Dna-3 lineage by units fromA. bidwillii, A. boliviana, andA. senegal. Based on this interpretation of the sequence data, the Australian species of subg.Phyllodineae grouped together as a cluster, quite separate from the subgeneraAculeiferum andAcacia. As expected from the analyses of morphological characters, the 5S DNA units fromAcacia albida (syn.Faidherbia albida) were quite separate from the otherAcacia spp.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant systematics and evolution 183 (1992), S. 249-264 
    ISSN: 1615-6110
    Keywords: Poaceae ; Oryza ; 5S DNA ; phylogeny ; evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Relationships between 9Oryza species, covering 6 different genomes, have been studied using hybridization and nucleotide sequence information from the5S Dna locus. Four to five units of the major size class of 5S DNA in each species, 55 units in all, were cloned and sequenced. Both hybridization and sequence data confirmed the basic differences between the A and B, C, D genome species suggested by morphological and cytological data. The 5S DNA units of the A genome species were very similar, as were the ones from the B, C, and D genome-containing species. The 5S DNA ofO. australiensis (E genome) grouped with the B, C, D cluster, while the units ofO. brachyantha (F genome) were quite different and grouped away from all other species. 5S DNA units fromO. minuta, O. latifolia, O. australiensis, andO. brachyantha hybridized strongly, and preferentially, to the genomic DNA from which the units were isolated and hence could be useful as species/genome specific probes. The 5S DNA units fromO. sativa, O. nivara, andO. rufipogon provided A genome-specific probes as they hybridized preferentially to A genome DNA. The units fromO. punctata andO. officinalis displayed weaker preferential hybridization toO. punctata DNA, possibly reflecting their shared genome (C genome).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...