Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Veratrum alkaloid  (2)
  • insulin receptor  (2)
  • nitrogen adsorption  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 14 (1975), S. 1295-1301 
    ISSN: 0031-9422
    Keywords: 22,26-epiminocholestane alkaloid ; Liliaceae ; Veratrum alkaloid ; Veratrum grandiflorum ; biosynthesis ; hakurirodine ; rubijervine.
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 14 (1975), S. 1295-1301 
    ISSN: 0031-9422
    Keywords: 22,26-epiminocholestane alkaloid ; Liliaceae ; Veratrum alkaloid ; Veratrum grandiflorum ; biosynthesis ; hakurirodine ; rubijervine
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-8757
    Keywords: micropore analysis ; nitrogen adsorption ; activated carbon fiber surface fluorination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Nitrogen adsorption isotherms for fluorinated activated carbon fiber (F-ACF) and fluorinated carbon black (F-CB) were measured at 77 K. Surface structures of F-ACF and F-CB were examined by α s -plot analysis using the adsorption data on the nonporous carbon black (CB) and F-CB. The surface energy of F-ACF was lower than that of ACF. The micropore structure of ACF was preserved even after fluorination, although the limiting adsorption amount and the micropore width decreased with fluorination.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Adsorption 4 (1998), S. 187-195 
    ISSN: 1572-8757
    Keywords: mesopore structure ; Saam-Cole theory ; adsorption hysteresis ; carbon aerogel ; nitrogen adsorption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The detailed adsorption isotherms of nitrogen on carbon aerogels at 77 K were measured. The N2 adsorption isotherm had a marked hysteresis. The adsorption isotherms were analyzed by high resolution αs-plots to evaluate their porosity. The αs-plots showed an explicit upward deviation from the linearity below αs = 0.5, suggesting the presence of micropores. The mesoporosity and microporosity were separately determined from the αs-plot. The predominant pores in carbon aerogels were mesopores and the percentage of micropores was in the range of 5 to 10% of the total pore volume. The N2 adsorption hysteresis was analyzed with the Saam-Cole theory under the assumption of the cylindrical pore shape. The parameters determined from the Saam-Cole method were associated with the carbon aerogel structure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0428
    Keywords: Bradykinin ; bradykinin B2 receptor ; glucose uptake ; tyrosine kinase ; insulin receptor ; insulin receptor substrate-1 ; adipocyte ; GLUT4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary It has been suggested that bradykinin stimulates glucose uptake in experiments in vivo and in cultured cells. However, its mechanism has not yet been fully elucidated. In this study, the effects of bradykinin on the insulin signalling pathway were evaluated in isolated dog adipocytes. The bradykinin receptor binding study revealed that dog adipocytes possessed significant numbers of bradykinin receptors (Kd=83 pmol/l, binding sites = 1.7×104 site/cell). Reverse transcription-polymerase chain reaction amplification showed the mRNA specific for bradykinin B2 receptor in the adipocytes. Bradykinin alone did not increase 2-deoxyglucose uptake in adipocytes; however, in the presence of insulin (10−7 mol/l) it significantly increased 2-deoxyglucose uptake in a dose-dependent manner. Bradykinin also enhanced insulin stimulated GLUT4 translocation from the intracellular fraction to the cell membrane, and insulin induced phosphorylation of the insulin receptor Β subunit and insulin receptor substrate-1 (IRS-1) without affecting the binding affinities or numbers of cell surface insulin receptors in dog adipocytes. The time-course of insulin stimulated phosphorylation of the insulin receptor Β subunit revealed that phosphorylation reached significantly higher levels at 10 min, and stayed at the higher levels until 120 min in the presence of bradykinin, suggesting that bradykinin delayed the dephosphorylation of the insulin receptor. It is concluded that bradykinin could potentiate insulin induced glucose uptake through GLUT4 translocation. This effect could be explained by the potency of bradykinin to upregulate the insulin receptor tyrosine kinase activity which stimulates phosphorylation of IRS-1, followed by GLUT4 translocation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0428
    Keywords: Keywords Bradykinin ; bradykinin B2 receptor ; glucose uptake ; tyrosine kinase ; insulin receptor ; insulin receptor substrate-1 ; adipocyte ; GLUT4.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary It has been suggested that bradykinin stimulates glucose uptake in experiments in vivo and in cultured cells. However, its mechanism has not yet been fully elucidated. In this study, the effects of bradykinin on the insulin signalling pathway were evaluated in isolated dog adipocytes. The bradykinin receptor binding study revealed that dog adipocytes possessed significant numbers of bradykinin receptors (Kd = 83 pmol/l, binding sites = 1.7 × 104 site/cell). Reverse transcription-polymerase chain reaction amplification showed the mRNA specific for bradykinin B2 receptor in the adipocytes. Bradykinin alone did not increase 2-deoxyglucose uptake in adipocytes; however, in the presence of insulin (10–7 mol/l) it significantly increased 2-deoxyglucose uptake in a dose-dependent manner. Bradykinin also enhanced insulin stimulated GLUT4 translocation from the intracellular fraction to the cell membrane, and insulin induced phosphorylation of the insulin receptor β subunit and insulin receptor substrate-1 (IRS-1) without affecting the binding affinities or numbers of cell surface insulin receptors in dog adipocytes. The time-course of insulin stimulated phosphorylation of the insulin receptor β subunit revealed that phosphorylation reached significantly higher levels at 10 min, and stayed at the higher levels until 120 min in the presence of bradykinin, suggesting that bradykinin delayed the dephosphorylation of the insulin receptor. It is concluded that bradykinin could potentiate insulin induced glucose uptake through GLUT4 translocation. This effect could be explained by the potency of bradykinin to upregulate the insulin receptor tyrosine kinase activity which stimulates phosphorylation of IRS-1, followed by GLUT4 translocation. [Diabetologia (1996) 39: 412–420]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...