Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 742-748 
    ISSN: 0006-3592
    Keywords: alcohol ; fermentation ; ethanol ; Saccharomyces cerevisiae ; model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We Propose a kinetic expression which accounts for the temperature dependence of ethanol yield losses in batch alcoholic fermentation. Moreover, the characteristic parameters of the microbial growth equation have been calculated for Saccharomyces cerevisiae under typical wine industry conditions. A substrate consumption equation is established which minimizes possible model deviations in the latter process stages. Experimental data were obtained in the laboratory and the proposed equations were then applied at an industrial level (2.5 × 104 L) where they described the data well.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 310-317 
    ISSN: 0006-3592
    Keywords: acetic acid fermentation ; liquid-gas equilibrium ; evaporation losses ; mathematical model ; open fermentation system ; semiclosed fermentation system ; closed fermentation system ; laboratory scale ; pilot plant scale ; industrial plant scale ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An experimental study was conducted to propose an adequate mathematical model for liquid-gas equilibrium in acetic acid fermentations. Three operation scales (laboratory, pilot plant, and industrial plant) were employed to obtain the sets of experimental data. The proposed model, based in the UNIFAC method for the estimation of activity coefficients of a solution consisting of several components, takes into account the effect of temperature. However, in the set of equations, it has been necessary to put in the degree of equilibrium (∊). This coefficient adequately reflects the physical conditions of fermentation equipment. The experimental and numerical results help to define the fundamental mechanisms for liquid-gas equilibrium in these systems and demonstrate the model validity in the three tested scales. It was also found that in an industrial setting, closed systems are those with lowest evaporation losses. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:310-317, 1998.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...