Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • acetylcholine receptor  (6)
  • binding site  (2)
  • myoglobins  (2)
  • 1
    ISSN: 1573-4943
    Keywords: Antibody ; acetylcholine receptor ; synthetic peptide ; binding profile ; exposed regions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract To study the structural organization of the main extracellular domain of the nicotinic acetylcholine receptor (AChR)α subunit in live muscle cells, we examined the native membrane-bound receptors in cultured mouse skeletal muscle cells for their ability to bind a panel of antibodies against uniform-sized overlapping synthetic peptides which collectively represent this entire domain. The binding profile indicated that the regions α23–49,α78–126,α146–174, andα182–210 are accessible to binding with antibody. Residuesα23–49,α78–126, andα194–210 contain binding regions forα-neurotoxin and some myasthenia gravis autoantibodies. A comparison of this binding profile with the profile obtained for membrane-boundTorpedo californica AChR in isolated membrane fractions showed some similarities as well as significant differences between the subunit organization in the isolated membrane fraction and that in the membrane of live muscle cells. Regionsα89–104 andα158–174, which are exposed in the isolated membrane fraction, are also exposed in the live cell. On the other hand, regionsα23–49, andα182–210, which are exposed in the live cell, are not accessible in the isolated membrane and, furthermore, the regionα1–16, which has marginal accessibility in the cell, becomes highly accessible in the membrane isolates. The exposed regions defined by this study may be the primary targets for the initial autoimmune attack on the receptors in experimental autoimmune myasthenia gravis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4943
    Keywords: Amino acid substitutions ; monoclonal antibodies ; myoglobins ; predetermined specificity ; synthetic antigenic site
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Monoclonal antibodies (mAbs) of predetermined specificity were prepared by immunizing with a free (i.e., not conjugated to any carrier) synthetic peptide representing region 15–22 (site 1) of sperm whale myoglobin (SpMb). The cross-reactions of Mb variants with three mAbs were studied in order to determine whether such interactions are influenced by substitutions outsde the site. Finback whale Mb, which has no substitutions within region 15–22, showed lower cross-reactivity and relative binding affinity than the reference antigen, SpMb. Bottle-nose Atlantic dolphin myoglobin (BdMb) and badger myoglobin (BgMb), although they have identical substitutions within region 15–22 (Ala-15 to Gly and Val-21 to Leu), showed very different binding properties. The cross-reaction of BdMb was quite comparable to that of SpMb, while that of BgMb was much lower. Since the two proteins have identical structures in regions 15–22, the differences in their cross-reactivities are readily attributed to the effects of substitutions outside this region. Another pair of myoglobins, horse myoglobins (HsMb) and chicken myoglobin (ChMb), also have two identical substitutions (Ala-15 to Gly and Val-21 to Ile) within region 15–22, but possessed different cross-reactivity. The results indicate that the reaction of mAbs, whose specificity is precisely known and predetermined by the immunizing free peptide, can be markedly affected by substitutions outside the indicated binding region on the protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4943
    Keywords: Amino acid substitutions ; monoclonal antibodies ; myoglobins ; predetermined specificity ; synthetic antigenic site
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Monoclonal antibodies of predetermined specificity were prepared by immunization with a free (i.e., without coupling to any protein carrier) synthetic peptide representing region 145–151 of sperm whale myoglobin (SpMb) and their cross-reactions with eight Mb variants were determined. Five Mbs—bottle-nose dolphin myoglobin (BdMb), pacific common dolphin myoglobin (PdMb), horse myoglobin (HsMb), dog myoglobin (DgMb), and badger myoglobin (BgMb)—have an identical sequence in that region. Nevertheless, these Mbs exhibited very different cross-reactivities. BdMb and PdMb exhibited cross-activities which were comparable to that of the reference antigen, SpMb; while the reactivity of HsMb was remarkedly decreased, DgMb and BgMb showed almost no cross-reactions with these mAbs. Since the region 145–151 has an identical sequence in all the five Mbs, it is concluded that the differences in their antigenic reactivities with anti-region 145–151 mAbs are due to the effects of amino acid substitutions outside the region 145–151. Another pair of myoglobins, echidna myoglobin (EdMb) and chicken myoglobin (ChMb), have the same sequence in that region, but reacted very differently with anti-region 145–151 mAbs. The reactivity and affinity of EdMb were substantially decreased while those of ChMb were almost completely absent, relative to SpMb. It is concluded, contrary to popular assumptions, that when an amino acid substitution influences the binding of a protein variant to a mAb, it is not necessary for that substitution to be an actual contact residue (i.e., a residue within the antigenic site where the mAb binds). Such effects, which are often very drastic, could be due to indirect influences of the substitution on the chemical and binding properties of the site residues. Furthermore, residues which had been postulated, on the basis of these assumptions, to constitute discontinuous antigenic sites in SpMb, were found [from the present studies and those recently reported with mAbs against the other four antigenic site of Mb (regions 15–22, 56–62, 94–100, and 113–120 of SpMb)] to merely be exerting indirect effects on the known five antigenic sites of Mb. The effects of substitutions, which can happen even in the absence of conformational changes, are determined by many factors, such as the chemical nature of the substitution, its environment, its distance from the site, and the nature of the site residue(s) being affected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4943
    Keywords: Antipeptide antibodies ; acetylcholine receptor ; polypeptide chain organization ; subunit topography ; synthetic peptides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The extracellular surface of theα-chain ofTorpedo california acetylcholine receptor (AChR) was mapped for regions that are accessible to binding with antibodies against a panel of synthetic overlapping peptides which encompassed the entire extracellular parts of the chain. The binding of the antipeptide antibodies to membrane-bound AChR (mbAChR) and to isolated, soluble AChR. was determined. The specificity of each antiserum was narrowed down by determining the extent of its cross-reaction with the two adjacent peptides that overlap the immunizing peptide. With mbAChR, high antibody reactivity was obtained with antisera against peptidesα1–16,α89–104,α158–174,α262–276, andα388–408. Lower, but significant, levels of reactivity were obtained with antibodies against peptidesα67–82,α78–93,α100–115, andα111–126. On the other hand, free AChR bound high levels of antibodies against peptidesα34–49,α78–93,α134–150,α170–186, andα194–210. It also bound moderate levels of antibodies against peptidesα262–276 andα388–408. Low, yet significant, levels of binding were exhibited by antibodies against peptidesα45–60,α111–126, andα122–138. These binding studies, which enabled a comparison of the accessible regions in mbAChR and free AChR, revealed that the receptor undergoes considerable changes in conformation upon removal from the cell membrane. The exposed regions found here are discussed in relation to the functional sites of AChR (i.e., the acetylcholine binding site, the regions that are recognized by anti-AChR antibodies, T-cells and autoimmune responses and the regions that bind short and long neurotoxins).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4943
    Keywords: acetylcholine receptor ; α-bungarotoxin ; cobratoxin ; α-neurotoxin ; synthetic peptides ; toxin-binding regions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A set of 18 synthetic uniform overlapping peptides spanning the entire extracellular part (residues 1–210) of the α-subunit of human acetylcholine receptor were studied for their binding activity of125I-labeled α-bungarotoxin and cobratoxin. A major toxin-binding region was found to reside within peptide α122–138. In addition, low-binding activities were obtained with peptides α34–49 and α194–210. It is concluded that the region within residues α122–138 constitutes a universal major toxin-binding region for acetylcholine receptor of various species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4943
    Keywords: α-bungarotoxin ; acetylcholine receptor ; synthetic peptides ; toxin-binding sites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A set of seven peptides constituting the various loops and most of the surface areas of α-bungarotoxin (BgTX) was synthesized. In appropriate peptides, the cyclical (by a disulfide bond) monomers were prepared. In all cases, the peptides were purified and characterized. The ability of these peptides to bindTorpedo californica acetylcholine receptor (AChR) was studied by radiometric adsorbent titrations. Three regions, represented by peptides 1–16, 26–41, and 45–59, were able to bind125I-labeled AChR and, conversely,125I-labeled peptides were bound by AChR. In these regions, residues Ile-1, Val-2, Trp-28 and/or Lys-38, and one or all of the three residues Ala-45, Ala-46, and Thr-47, are essential contact residues in the binding of BgTX to receptor. Other synthetic regions of BgTX showed little or no AChR-binding activity. The specificity of AChR binding to peptides 1–16, 26–41, and 45–59 was confirmed by inhibition with unlabeled BgTX. It is concluded that BgTX has three main AChR-binding regions (loop I with N-terminal extension and loops II and III extended toward the N-terminal by residues 45–47).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-4943
    Keywords: acetylcholine receptor ; toxin-binding regions ; synthetic peptides ; cobratoxin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Eighteen consecutive uniform overlapping synthetic peptides that spanned the entire extracellular part (residues 1–210) of the α-chain ofTorpedo californica acetylcholine receptor were screened for binding activity of125I-labeled cobratoxin. Five toxin-binding regions were localized within residues 1–10, 32–41, 100–115, 122–150, and 182–198. The five toxin-binding regions may be distinct sites or, alternatively, different faces in one or more sites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    The protein journal 6 (1987), S. 455-461 
    ISSN: 1573-4943
    Keywords: α-bungarotoxin ; acetylcholine receptor ; synthetic peptide ; toxin-binding site
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A peptide corresponding to residues 26–41 of α-bungarotoxin, and closed by a disulfide bond between two cysteine residues at the amino and C terminal ends of the peptide, was synthesized and the monomeric form was purified. The peptide, which represents the exposed part of the long central loop of the toxin molecule, was examined for binding to acetylcholine receptor. The peptide was shown by radiometric titrations to bind radiolabeled receptor, and radiolabeled peptide was bound by receptor. The specificity of the binding was confirmed by inhibition with the parent toxin. A synthetic analog of the peptide in which Trp-28 was replaced by glycine had very little (10%) of the original activity. Succinylation of the amino groups of the peptide resulted in virtually complete (98%) loss of the binding activity. These results indicate that a shortened loop peptide corresponding to the region 26–41 of α-bungarotoxin exhibits binding activities mimicking those of the parent molecule. In this region, Trp-28, and one or both of Lys-26 and Lys-38, are essential contact residues in the binding to receptor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    The protein journal 9 (1990), S. 229-233 
    ISSN: 1573-4943
    Keywords: Insulin ; insulin receptor ; binding site ; synthetic peptides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Seven regions of the α subunit of human insulin receptor (HIR) were synthesized and examined for their ability to bind radioiodinated insulin. A peptide representing one of these regions (namely, residues α655–670) exhibited a specific binding activity for insulin. In quantitative radiometric titrations, the binding curves of125I-labeled insulin to adsorbents of peptide α655–670 and of purified placental membrane were similar or superimposable. The binding of radioiodinated insulin to peptide or to membrane adsorbents was completely inhibited by unlabeled insulin, and the inhibition curves indicated that the peptide and the membrane on the adsorbents had similar affinities. Synthetic peptides that were shorter (peptide α661–670) or longer (peptide α651–670) than the region α655–670 exhibited lower insulin-binding activity. It was concluded that an insulin-binding region in the HIR α subunit resides within residues α655–670. The results do not rule out the possibility that other regions of the α subunit may also participate in binding of HIR to insulin, with the region described here forming a “face” within a larger binding site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-4943
    Keywords: Hemoglobin ; haptoglobin ; binding site ; synthetic peptides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Previous studies from this laboratory employing a comprehensive synthetic overlapping peptide strategy showed that the α-chain of human hemoglobin (Hb) contains a single haptoglobin (HP) binding region residing within residues α121–135. The present study describes a precise delineation of this Hp-binding site on the α-chain. Two overlapping peptides (α111–125 and α121–135) spanning this region and a panel of five peptides decreasing at the C-terminal from residue 135 by decrements of two residues (α119–135, α119–133, α119–131, α119–129, and α119–127) were synthesized, purified, and characterized. Quantitative radiometric titration of125I-labeled human HP (type 2-1) with adsorbents of each of these synthetic peptides showed that the peptide α119–127 retained a Hp-binding activity equivalent to that of peptide α121–135. This finding indicated that Lys-127 marked the C-terminal boundary of the binding site. Another panel of eight peptides was then synthesized, which had their C-terminus fixed at Lys-127 and increased at the N-terminus by one-residue increments from residue 122 up to residue 115 (α122–127, α121–127, α120–127, α119–127, α118–127, α117–127, α116–127, and α115–127). The binding of125I-Hp to adsorbents of these peptides demonstrated that the N-terminal boundary of the site did not extend beyond Valine 121. It is, therefore, concluded that the Hp-binding site on the α-chain of human Hb comprises residues α121–127.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...