Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 743-747 
    ISSN: 0006-3592
    Keywords: immobilized enzyme ; active enzyme ; diffusion ; controlled-pore glass ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The method Presented earlier by Hossain and Do determine the active enzyme distribution and relevant rate parameters under the condition of strong diffusional resistance is extended in this article to cover the cases of comparable diffusion and reaction rates (3 〈 φ 〈 20). The theory proposed herein is tested wtih the experimental data of hydrogen perioxide-catalase immobilized on controlled-pore glass (CPG) particles of small size (150 μm). © 1992 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 679-687 
    ISSN: 0006-3592
    Keywords: immobilized enzyme distribution ; diffusion cell ; active-site titration ; controlled-pore glass ; cell profile ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The total and active immobilized enzyme (IME) distributions in porous supports are studied both theoretically and experimentally. In order to determine experimentally the enzyme distribution profiles within a single particle, we construct a diffusion cell containing controlled-pore glass particles such that the cell would mimic a large pellet support. Our purpose is to study the interplay between the diffusion process within the interparticle void space and immobilization process in the controlled-pore glass particles onto the evolution of the (total and active) enzyme distributions. A mathematical model is developed to describe the interaction of various processes within the diffusion cell. The immobilized enzymes are determined for a system of trypsin and controlled-pore glass particles. The total amount of enzymes are determined by the amino acid analysis, and the active fraction is obtained by an active-site titration. The experimentally measured total IME profiles compare very well with that predicted by the model. The determined active enzyme profile is found to be nonuniform one, and it represents about 40% of the total enzyme immobilized in the support particles.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...