Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 17 (1993), S. 1-10 
    ISSN: 0887-3585
    Keywords: docking ; active site ; aconitase ; structure prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Automated docking of substrates to proteins of known structure aids the process of crystallographic analysis in two ways. First, automated docking can be used to generate a small number of starting models for substrates using only protein coordinates from an early stage of refinement. Second, automated docking provides a method for exploring aspects of catalysis that are inaccessible to crystallography by postulating binding modes of catalytic intermediates. This paper describes the use of automated docking to explore the binding of substrates to aconitase. The technique starts with a substrate molecule in an arbitrary configuration and position and finds favorable docked configrations in a (static) protein active site based on a molecular mechanics type force field. Using protein coordinates from an early stage of refinement of an aconitase-isocitrate complex, we successfully predicted the binding configuration of isocitrate. Four configurations were found, the energetically most favorable of which fit the observed electron density well and was used as a starting model for further refinement. Two configurations were found in citrate docking experiments, the second of which approximates the mode of substrate binding in an aconitasenitrocitrate complex. We were also able to propose two binding modes of the catalytic intermediate cis-aconitate. These correspond closely to the isocitrate and the citrate binding modes. The relation of these new results to the proposed reaction mechanism is discussed. © 1993 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...