Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • adenosine receptor  (1)
  • guanosine 3′, 5′-cyclic monophosphate  (1)
  • hydroxyl radical  (1)
  • 1
    ISSN: 1573-4919
    Keywords: nitric oxide ; endotoxin ; cardiomyocytes ; guanosine 3′, 5′-cyclic monophosphate ; calcium ; ADP-ribosylation ; phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract To evaluate the effects of the in vivo endotoxin treatment of the rat on (1) the contractile responses in the subsequently isolated papillary muscle to adrenergic and cholinergic agonists and (2) the biochemical parameters (cyclic GMP, nitric oxide synthesis, protein phosphorylation and ADP-ribosyslation) in the subsequently isolated cardiomyocytes. Following the in vivo endotoxin treatment (4 mg/kg i.p., 18 h), contractile responses to increasing amounts of isoprenaline or to increasing amounts of oxotremorine in the presence of a fixed amount of isoprenaline were determined in isolated papillary strips. Activities of nitric oxide synthase, guanylyl cyclase, as well as phosphorylation of phospholamban and troponin-inhibitory subunit, and pertussis toxin-catalyzed and endogenous ADP-ribosylations were determined in the intact cardiomyocytes and subcellular fractions. The increase in the force of contraction by isoprenaline was reduced, while its inhibition by oxotremorine was greater in the endotoxin-treated papillary strips. The activities of both nitric oxide synthase, primarily of the inducible form of the enzyme, and cytosolic guanylyl cyclase were higher while the phosphorylations of both phospholamban and troponin-inhibitory subunit were of lesser magnitude in the cardiomyocytes following the in vivo endotoxin treatment. Pertussis toxin-catalyzed ADP-ribosylation of the 41 kDa polypeptide, which is the alpha subunit of Gi, was also decreased. The results of the present study support the postulate that alterations in both the cyclic AMP and cyclic GMP signalling cascade contribute to the myocardial dysfunction caused by endotoxin and cytokines.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4919
    Keywords: cardiomyocytes ; desensitization ; G proteins ; adenylyl cyclase ; cross-talk ; adrenergic receptor ; adenosine receptor ; muscarinic receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Chronic exposure of cells to cognate agonists has been established to cause homologous desensitization of G protein-coupled receptors. In this work, we show that exposure of adult rat eardiomyoeytes to isoproterenol (ISO) for 24 h led to the desensitization of β-adrenoceptor (β-AR) coupled adenylyl cyclase (AC) activity, which was associated with an increased inhibition of AC by M2-muscarinic receptor (MR) agonist, carbachol (Cch), and a decreased inhibition of AC by A1-adenosine receptor (AdR) agonist, N6-phenylisopropyladenosine (R-PIA). Chronic exposure of eells to Cch caused the desensitization of M2-MR-coupled AC, decreased the inhibitory action of R-PIA on AC and increased ISO-stimulated AC, while chronic exposure to R-PIA caused the desensitization of A1-AdR-coupled AC and modestly increased ISO-stimulated AC without any significant effect on Cch inhibition of the enzyme. Thus, chronic exposure ol cardiomyocytes revealed for the first time a more complex and differential nature of cross-talk among the three major G-coupled receptors in modulating AC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4919
    Keywords: cardiomyocytes ; protein phosphorylation ; phospholamban ; inhibitory subunit of troponin ; oxygen free radicals ; hydroxyl radical
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Myocytes were isolated from rat heart ventricles and then incubated with [32P]-sodium phosphate to label intracellular ATP stores. Incubations of the [32P]-labelled cardiomyocytes with a b-adrenoceptor agonist isoproterenol (10 µM) and with a plant diterpene forskolin (100 µM) which directly stimulates adenylyl cyclase increased the phosphorylation of an inhibitory subunit of troponin (TN-I) and phospholamban (PLN). Brief exposure (1 min) of labelled myocytes to the hydroxyl radical generating system (H2O2 plus FeCl2) decreased markedly the stimulatory action of isoproterenol and forskolin on TN-I and PLN phosphorylation. Similar exposure of myocytes to 5-5′-dithiobis-nitrobenzoic acid (DTNB) a sulfhydryl oxidizing reagent exerted little inhibitory effect on the isoproterenol or forskolin stimulated TN-I and PLN phosphorylation. In contrast exposure of myocytes to low concentrations (〈 50 µM) of N-ethylmaleimide (NEM) a sulfhydryl alkylating reagent augmented the stimulatory effect of isoproterenol on TN-I and PLN phosphorylation. The results further showed that brief treatment of myocytes to H2O2 plus FeCl2 markedly decreased isoproterenol-, but not forskolin-, stimulated cyclic AMP accumulation in the myocytes. The stimulatory action of NEM on the isoproterenol-stimulated TN-I and PLN phosphorylation appeared related to greater increase in the isoproterenol-stimulated cyclic AMP accumulation in the NEM-treated cardiomyocytes. The results are consistent with the postulate that hydroxyl radical exposure of cardiomyocytes blunts the β-adrenoceptor-mediated stimulation of adenylyl cyclase leading to decreased phosphorylation of TN-I and PLN and imply that such alterations account in part the reported depressed rate of relaxation of the myocardium exposed to oxygen free radicals. (Mol Cell Biochem 175: 99–107, 1997)
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...