Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 601-605 
    ISSN: 0006-3592
    Keywords: lipase ; enzyme immobilization ; esterification ; fatty acid ; n-hexane ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The esterification of a long-chain fatty acid was conducted using a nylon-immobilized lipase from Candida cylindracea in a nearly anhydrous, nonpolar organic medium, hexane. Butyl laurate was produced from lauric acid and n-butanol at a maximum initial reaction rate of 37 mmol/h. g immobilized enzyme when the substrates were present in equimolar amounts at an initial concentration of 0.5 mol/L. Lower rates were obtained using nonstoichiometric amounts of the substrates. The rate of reaction increased with temperature, reaching a maximum between 35 and 45°C and decreasing sharply at higher temperatures. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 434-444 
    ISSN: 0006-3592
    Keywords: immobilized enzymes ; organic solvents ; esterification ; water ; adsorption ; adsorption modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Reducing the influence of an undesired product in an enzymatic reaction could have a significant impact on the productivity of such systems. Here, we focus on the removal of water formed during an enzymatic esterification in a batch reactor. A commercial immobilized lipase preparation, known as Lipozyme, is used as the biocatalyst and propionic acid and isoamyl alcohol dissolved in hexane are the substrates. In this system, the water formed will partition between the catalyst and the medium. As the more polar reactants are converted into the less polar ester product, the water is partitioned more towards the biocatalyst and the accumulation of water eventually causes lower reaction rates. Addition of a strong-acid cation exchange resin in sodium form is found to control the water accumulation on the biocatalyst without stripping the essential water needed for the enzyme to function and substantial improvements in conversion are achieved. A mathematical model is developed to describe the batch reaction behavior with and without added absorbent, which successfully predicts the behavior of water and its effects. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 434-444, 1998.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...