Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mitigation and adaptation strategies for global change 1 (1996), S. 139-165 
    ISSN: 1573-1596
    Keywords: Adaptation ; agriculture ; agroforestry ; climate change ; drought ; ecological degradation ; factor bias ; Senegal ; sustainability ; social relations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Abstract The ongoing drought in the Sahel region of West Africa highlights the vulnerability of food-producing systems to climate change and variability. Adaptation to climate should therefore increase the sustainability of agriculture under a long-term drought. Progress towards sustainability and adaptation in the the Senegal River Basin is hampered by an existing set of social and ecological relationships that define the control over the means of production and how people interact with their environment. These relationships are sensitive to the technological inputs and the administration of food production, or the factor bias in the different policy alternatives for rural development. One option is based on state-controlled, irrigated plantations to provide rice (Oryza) for the capital, Dakar. This policy emphasizes a top-down management approach, mechanized agriculture and a reliance on external inputs which strengthens the relationships introduced during the colonial period. A time series decomposition of the annual flow in the Senegal River at Bakel in Senegal suggests that water resources availability has been substantially curtailed since 1960, and a review of the water resources budget or availability in the basin suggests that this policy's food production system is not sustainable under the current climate of the basin. Under these conditions, this program is exacerbating existing problems of landscape degradation and desertification, which increases rural poverty. A natural resource management policy offers two adaptation strategies that favour decentralized management and a reduction of external inputs. The first alternative, “Les Perimetres Irrigués”, emphasizes village-scale irrigation, low water consumption cereal crops and traditional socio-political structures. The second alternative emphasizes farm-level irrigation and agro-forestry projects to redress the primary effects of desertification. The water requirements of both the rice import substitution program and the natural resource management program are calculated. A water resources simulation model/optimization analysis using dynamic programming is used to compare these two alternatives to the rice import substitution programs. Results indicate that the natural resource management policy could potentially bring a large area into production while using far less water than the rice import substitution program. The natural resource management policy, in particular the second alternative with its emphasis on individual ownership and ecological rehabiliation, defines a different set of social and ecological relationships that appear to enhance the sustainability of food production under a long-term drought.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5117
    Keywords: phosphorus ; nutrient cycling ; stratification ; epilimnion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phosphorus regeneration from lake sediments, and subsequent migration to trophogenic surface water, significantly contributes to the lake nutrient budgets and algal bloom conditions in some lake types. Decomposition of organic matter in deep water and sediments results in the accumulation of regenerated nutrients, alternate electron acceptors (reduced products of anaerobic respiration = COD), carbon dioxide, and depletion of dissolved oxygen (electron acceptor in aerobic respiration). Thermal stratification creates spatial segregation of trophogenic and tropholytic environments in the lake, resulting in gradients between sediments, hypolimnion, and the epilimnion. Exchange of oxygen, nutrients, and reduced alternate electron acceptors between the hypolimnion and epilimnion affects the productivity of a lake. Secchi depth, temperature, and dissolved oxygen profiles were determined twice each week from May 1980 to October 1980 at each of five lake stations. Nutrient concentration profiles, including total soluble and total phosphorus, ammonium-N, nitrate, soluble Kjeldahl, and total Kjeldahl nitrogen were determined twice each month. Epilimnetic algal samples were collected twice each week using Kemmerer and water column ‘straw’ amplers. Cell counts of total, green, bluegreen, and diatom algae groups were made. Three methods were used to describe hypolimnetic-epilimnetic exchange, including coefficients of eddy diffusion (based on lake heat budget), a graphical method of defining thermocline location, and relative thermal resistance to mixing (RTRM, based on density differences). All three methods yeilded comparable estimates of net seasonal transport. The graphical and RTRM methods described events occurring at shorter intervals (greater resolution). We find general agreement between the three methods of describing hypolimnetic-epilimnetic transport. The frequency of sampling resulted in increased resolution of thermal profiles (in time), allowing accurate estimation of short-term nutrient flux into epilimnetic waters. An algal bloom event occurred 5 to 12 days following erosion of the top of the metalimnion to below the aerobic-anaerobic interface. The lag time to peak algal concentration, following such events, decreased through the summer (June = 12 days, September = 5 days)
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Mitigation and adaptation strategies for global change 1 (1996), S. 139-165 
    ISSN: 1573-1596
    Keywords: Adaptation ; agriculture ; agroforestry ; climate change ; drought ; ecological degradation ; factor bias ; Senegal ; sustainability ; social relations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Abstract The ongoing drought in the Sahel region of West Africa highlights the vulnerability of food-producing systems to climate change and variability. Adaptation to climate should therefore increase the sustainability of agriculture under a long-term drought. Progress towards sustainability and adaptation in the the Senegal River Basin is hampered by an existing set of social and ecological relationships that define the control over the means of production and how people interact with their environment. These relationships are sensitive to the technological inputs and the administration of food production, or the factor bias in the different policy alternatives for rural development. One option is based on state-controlled, irrigated plantations to provide rice (Oryza) for the capital, Dakar. This policy emphasizes a top-down management approach, mechanized agriculture and a reliance on external inputs which strengthens the relationships introduced during the colonial period. A time series decomposition of the annual flow in the Senegal River at Bakel in Senegal suggests that water resources availability has been substantially curtailed since 1960, and a review of the water resources budget or availability in the basin suggests that this policy's food production system is not sustainable under the current climate of the basin. Under these conditions, this program is exacerbating existing problems of landscape degradation and desertification, which increases rural poverty. A natural resource management policy offers two adaptation strategies that favour decentralized management and a reduction of external inputs. The first alternative, “Les Perimetres Irrigués”, emphasizes village-scale irrigation, low water consumption cereal crops and traditional socio-political structures. The second alternative emphasizes farm-level irrigation and agro-forestry projects to redress the primary effects of desertification. The water requirements of both the rice import substitution program and the natural resource management program are calculated. A water resources simulation model/optimization analysis using dynamic programming is used to compare these two alternatives to the rice import substitution programs. Results indicate that the natural resource management policy could potentially bring a large area into production while using far less water than the rice import substitution program. The natural resource management policy, in particular the second alternative with its emphasis on individual ownership and ecological rehabiliation, defines a different set of social and ecological relationships that appear to enhance the sustainability of food production under a long-term drought.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5117
    Keywords: phosphorus ; nutrient cycling ; stratification ; epilimnion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phosphorus regeneration from lake sediments, and subsequent migration to trophogenic surface water, significantly contributes to the lake nutrient budgets and algal bloom conditions in some lake types. Decomposition of organic matter in deep water and sediments results in the accumulation of regenerated nutrients, alternate electron acceptors (reduced products of anaerobic respiration = COD), carbon dioxide, and depletion of dissolved oxygen (electron acceptor in aerobic respiration). Thermal stratification creates spatial segregation of trophogenic and tropholytic environments in the lake, resulting in gradients between sediments, hypolimnion, and the epilimnion. Exchange of oxygen, nutrients, and reduced alternate electron acceptors between the hypolimnion and epilimnion affects the productivity of a lake. Secchi depth, temperature, and dissolved oxygen profiles were determined twice each week from May 1980 to October 1980 at each of five lake stations. Nutrient concentration profiles, including total soluble and total phosphorus, ammonium-N, nitrate, soluble Kjeldahl, and total Kjeldahl nitrogen were determined twice each month. Epilimnetic algal samples were collected twice each week using Kemmerer and water column ‘straw’ amplers. Cell counts of total, green, bluegreen, and diatom algae groups were made. Three methods were used to describe hypolimnetic-epilimnetic exchange, including coefficients of eddy diffusion (based on lake heat budget), a graphical method of defining thermocline location, and relative thermal resistance to mixing (RTRM, based on density differences). All three methods yeilded comparable estimates of net seasonal transport. The graphical and RTRM methods described events occurring at shorter intervals (greater resolution). We find general agreement between the three methods of describing hypolimnetic-epilimnetic transport. The frequency of sampling resulted in increased resolution of thermal profiles (in time), allowing accurate estimation of short-term nutrient flux into epilimnetic waters. An algal bloom event occurred 5 to 12 days following erosion of the top of the metalimnion to below the aerobic-anaerobic interface. The lag time to peak algal concentration, following such events, decreased through the summer (June = 12 days, September = 5 days)
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5117
    Keywords: phosphorus ; nutrient cycling ; stratification ; epilimnion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phosphorus regeneration from lake sediments, and subsequent migration to trophogenic surface water, significantly contributes to the lake nutrient budgets and algal bloom conditions in some lake types. Decomposition of organic matter in deep water and sediments results in the accumulation of regenerated nutrients, alternate electron acceptors (reduced products of anaerobic respiration = COD), carbon dioxide, and depletion of dissolved oxygen (electron acceptor in aerobic respiration). Thermal stratification creates spatial segregation of trophogenic and tropholytic environments in the lake, resulting in gradients between sediments, hypolimnion, and the epilimnion. Exchange of oxygen, nutrients, and reduced alternate electron acceptors between the hypolimnion and epilimnion affects the productivity of a lake. Secchi depth, temperature, and dissolved oxygen profiles were determined twice each week from May 1980 to October 1980 at each of five lake stations. Nutrient concentration profiles, including total soluble and total phosphorus, ammonium-N, nitrate, soluble Kjeldahl, and total Kjeldahl nitrogen were determined twice each month. Epilimnetic algal samples were collected twice each week using Kemmerer and water column ‘straw’ amplers. Cell counts of total, green, bluegreen, and diatom algae groups were made. Three methods were used to describe hypolimnetic-epilimnetic exchange, including coefficients of eddy diffusion (based on lake heat budget), a graphical method of defining thermocline location, and relative thermal resistance to mixing (RTRM, based on density differences). All three methods yeilded comparable estimates of net seasonal transport. The graphical and RTRM methods described events occurring at shorter intervals (greater resolution). We find general agreement between the three methods of describing hypolimnetic-epilimnetic transport. The frequency of sampling resulted in increased resolution of thermal profiles (in time), allowing accurate estimation of short-term nutrient flux into epilimnetic waters. An algal bloom event occurred 5 to 12 days following erosion of the top of the metalimnion to below the aerobic-anaerobic interface. The lag time to peak algal concentration, following such events, decreased through the summer (June = 12 days, September = 5 days)
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...