Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 129 (1985), S. 139-152 
    ISSN: 1573-5117
    Keywords: San Francisco Bay ; macroalgae ; distribution ; estuary ; algal blooms ; intertidal
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Long-term sampling of intertidal macroalgae along permanently marked transects within San Francisco Bay has shown a marked decline in overall species number along the estuarine gradient from the ocean to the river, presumably as a result of decreasing salinity and a progressive lack of hard substrata in the upstream direction. Green algae penetrated further landward than either brown or red species. Seasonally, macroalgal species diversity is lowest during the winter-spring months when salinity, temperature, and irradiance are at yearly minima. Macroalgal abundance as measured by percent cover was maximum during the late spring near the mouth of the estuary and during late summer towards the head. The seasonal increase in algal abundance is related to increasing salinity, temperature, and light availability to the bottom. The summer increase in irradiance is due to the longer photoperiod, increased frequency of day-time low tides, and reduced levels of suspended sediments. The aperiodic occurrence of algal blooms in San Pablo Bay may be caused by a combination of physical factors which are ultimately associated with the river inflow. A hypothesis based on interannual differences in river inflow and the contribution of phytoplankton to nutrient cycles in the benthos is presented to explain the occurrence of nuisance algal blooms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...