Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • bacterial profile modification  (2)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 865-873 
    ISSN: 0006-3592
    Keywords: Leuconostoc mesenteroides ; dextran ; kinetics ; bacterial profile modification ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Bacterial profile modification (BPM) is being developed as an oil recovery technique that uses bacteria to selectively plug oil depleted zones within a reservoir to divert displacing fluids (typically water) into oil-rich zones. Leuconostoc mesenteroides, which produces dextran when supplied with sucrose, is a bacterium that is technically feasible for use in profile modification. However, the technique requires controlled bacterial growth to produce selective plugging.A kinetic model for the production of cells and polysaccharides has been developed for L. mesenteroides bacteria. This model, based on data from batch growth experiments, predicts saccharide utilization, cell generation, and dextran production. The underlying mechanism is the extracellular breakdown of sucrose into glucose and fructose and the subsequent production of polysaccharide (dextran). The monosaccharides are then available for growth. Accompanying sucrose consumption is the utilization of yeast extract. The cell requires a complex media that is provided by yeast extract as a source of vitamins and amino acids. Varying the concentration ratio of yeast extract to sucrose in the growth media provides a means of controlling the amount of polymer produced per cell. Consequently, in situ bacteria growth can be controlled by the manipulation of nutrient media composition, thereby providing the ability to create an overall strategy for the use of L. mesenteroides bacteria for profile modification.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 6-15 
    ISSN: 0006-3592
    Keywords: Leuconostoc mesenteroides ; transport ; growth model, in situ ; bacterial profile modification ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In situ growth of bacteria in a porous medium can alter the permeability of that media. This article reveals that the rate of permeability alteration can be controlled by the inoculation strategy, nutrient concentrations, and injection rates. Based on experimental observations a phenomenological model has been developed to describe the inoculation of the porous medium, the in situ growth of bacteria, and the permeability decline of the porous medium. This model consists of two phases that describe the bacteria in the porous medium: (1) the nongrowth phase in which cell transport and retention are occurring; and (2) the growth phase in which the retained cells grow and plug the porous media. Transition from the transport phase to the growth phase is governed by the growth lag time of the cells within the porous medium. The importance of the inoculum injection strategy and the nutrient injection strategy is illustrated by the model. © 1996 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...