Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-994X
    Keywords: CaMV movement protein ; protein characterization ; baculovirus expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Cauliflower mosaic virus (CaMV) gene I encodes a protein (P1) that has been implicated in the control of virus movement in infected plants. To assist in the characterization of the mechanism of action of P1, gene I has been expressed efficiently inSpodoptera frugiperda (Sf) cells using recombinant baculovirus. Control of the expression of CaMV gene I by the polyhedrin late promotor in the baculovirusAutographa californica nuclear polyhedrosis virus (AcNPV) resulted in very high levels of P1 accumulation late in the infection cycle. This was predominantly as insoluble inclusion bodies within the cytoplasm of infected Sf cells, and not extracellularly. Evidence from anomalous gel migration and sequence homology with an analogous viral protein (tobacco mosaic virus 30K) indicated that P1 may be post-translationally processed. However, neither phosphorylation nor glycosylation of P1 occurred in this system, suggesting a functional distinction between P1 and TMV 30K. P1 from insect cells and native P1 from infected plants were immunologically related, allowing the expressed product to be used in the preparation of anti-P1 serum for detecting P1 in plant extracts. The full-size (46 kD) P1 product from insect cells, from plants, and from in vitro translations of in vitro gene I transcripts all showed similar behavior on two-dimensional protein gels, with a major pI of 7.0. Using a combination of 4 M urea, 1 M NaCl, and high temperature, P1 was solubilized. Approximately 5% of the starting material remained in solution after dialysis and remained stable to freeze/thawing. This preparation should enable us to identify the biochemical function of P1 and to resolve its role in controlling virus spread.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cytotechnology 20 (1996), S. 231-238 
    ISSN: 1573-0778
    Keywords: air lift ; animal cell ; bubble column ; design ; oxygen gradients ; scaleup ; stirred vessel ; CSTR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Conclusions It should be clear from the above that the calculations described here are at best rough estimations yielding order-of-magnitude values. Even though, the following general conclusions can be drawn. The gradients in stagnant layers surrounding the particles which are characteristic for animal-cell bioreactors are relatively small as compared to the gradients which can be expected in the bulk-liquid phases of the three bioreactors considered, in particular to the gradients in the stagnant layer surrounding the air bubbles. It can be concluded that under almost all circumstances gradients are likely to exist and can be very steep in larger vessels and in particular at high cell densities. The effects of gradients, however, are largely unknown; therefore research on the effects of gradients on specific and volumetric productivities and product quality seems to be an interesting area.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...