Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: barley ; crown roots ; growth ; nitrate reductase ; nitrate uptake ; seminal roots ; solution culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Barley (Hordeum vulgare L., cvs Golf and Laevigatum) was grown under nitrogen limitation, controlled by the relative rate of nitrate-N addition (RA), in solution culture. The seminal and crown root systems were kept apart, but in contact with the same nutrient solution throughout culturing. Growth, nitrate uptake, and in vitro nitrate reductase (NR) activity in the different root parts were studied at plant ages from 40 (late vegetative stage) to 110 (mid grain-filling) days. The RA was during this time interval stepwise decreased from 0.08 day−1 to 0.005 day−1. The ratio between seminal root dry weight and total plant dry weight decreased drastically during post-anthesis growth, whereas the contribution by crown roots remained unchanged. Tissue nitrogen concentrations in seminal roots did not change with time, but decreased in crown roots after day 80. The NR activity decreased with age in both seminal and crown roots. The Vmax for net nitrate uptake decreased throughout the experiment in the seminal root system, but not in the crown root system. The kinetic properties (Vmax and KM) were used to calculate the nitrate concentration required to maintain a relative rate of nitrate-N uptake that equals the relative addition rate. These concentrations (2 to 5 mmol m−3) were found to closely match actually measured nitrate concentrations in the nutrient solution (1 to 6 mmol m−3). From uptake kinetics, it was deduced that the contribution by seminal roots to total nitrate uptake at these concentrations decreased from more than 50% in vegetative plants, to about 20% just after main shoot anthesis, and to less than 5% during grain-filling. ei]Section editor: H Lambers
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: bacteria ; barley varieties ; exudation ; rhizoplane ; soluble organic carbon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The abundance of bacteria in the rhizoplane of barley varieties was investigated at different soil nitrogen levels. Increased amendments of nitrogen resulted in higher bacterial numbers in the rhizoplane of barley seedlings of different varieties. A negative correlation was found between nitrogen level in the soil and the growth rate of the seedling roots. The effect of nitrogen on the bacterial abundances could be indirect through changed root growth and thereby changed exudation. The exudation of soluble organic carbon componds from barley seedling roots were measured in hydroponic culture. The effect of natural variation in root growth rate and of different concentrations of nitrogen in the nutrient solution was investigated. The amount of exudates consituted 2–66% of the dry weight increase in root biomass, depending on the root growth. Slower growing roots released considerably more organic carbon per unit root weight than faster growing roots. The variation in root exudation appeared to be mainly explained by differences in root growth, rather than of the nitrogen concentration in the nutrient solution. A significantly higher exudation rate was found during day time compared to night.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...