Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology letters 21 (1999), S. 159-162 
    ISSN: 1573-6776
    Keywords: granules ; UASB ; resistance ; toxic chemicals ; layered structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract To investigate the effect of granular structure on resistance to toxic chemicals in UASB (Upflow Anaerobic Sludge Blanket) reactors, normal and broken granules were examined for their ability to degrade acetate with and without the addition of toluene or trichloroethylene as a toxic chemical. Without a toxic chemical, both normal and broken granules degraded the acetate at the same volumetric degradation rate (3.21 mM h−1). However, when 500 μl l−1 of toluene or trichloroethylene was added, the acetate-degradation rate of the broken granules was about a third of the rate with normal granules. Therefore, the layered structure of the UASB granules seems to give microbial populations the ability to resist toxic chemicals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6776
    Keywords: bacterial resistance ; granules ; metal ions ; methanogen ; upflow anaerobic sludge blanket reactor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Metal ions (Cd2+, Cu2+, Ni2+, Zn2+ and Cr3+) did not affect glucose degradation or the production of methane during anaerobic digestion with intact and disintegrated granules from a UASB (Upflow Anaerobic Sludge Blanket) reactor. However, when Cu2+ was at 500 mg g−1 VSS (volatile suspended solids) in the media, the glucose degradation rates and methane production rates decreased by 14% and 32% in disintegrated granules, respectively, whereas, in intact granules, decreases were 3% and 14%, respectively. When various electroplating metal ions were tested, 50% inhibition of acetate degradation and methane production were produced by 210–770 mg g−1 VSS and 120–630 mg g−1 VSS, respectively. The relative toxicity of the electroplating metals on methane production was in the order of Zn2+ (most toxic) 〉 Ni2+ 〉 Cu2+ 〉 Cr3+ 〉 Cd2+ (least toxic).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology letters 22 (2000), S. 915-919 
    ISSN: 1573-6776
    Keywords: bioremediation ; chlorophenols ; microcosm ; oxygen ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A chlorophenol-contaminated soil was tested for the biodegradability in a semi-pilot scale microcosm using indigenous microorganisms. More than 90% of 4-chlorophenol and 2,4,6-trichlorophenol, initially at 30 mg kg−1, were removed within 60 days and 30 mg pentachlorophenol kg−1 was completely degraded within 140 days. The chlorophenols were degraded more effectively under aerobic condition than under anaerobic condition. Soil moisture had a significant effect with the slowest degradation rate of chlorophenols at 25% in the range of 10–40% moisture content. At 25–40%, the rate of chlorophenol degradation was directly related to the soil moisture content, whereas at 10–25%, it was inversely related. Limited oxygen availability through soil agglomeration at 25% moisture content might decrease the degradation rate of chlorophenols.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...