Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3592
    Keywords: metabolic flux ; hybridoma cells ; mass balances ; biosynthesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The estimation of the intracellular fluxes of mammalian cells using only the mass balances of the relevant metabolites is not possible because the set of linear equations defined by these mass balances is underdetermined. Either additional experimental flux data or additional theoretical constraints are required to find one unique flux distribution out of the solution space that is bound by the mass balances. Here, a method is developed using the latter approach. The uptake and production rates of amino acids, glucose, lactate, O2, CO2, NH4, MAB, and the intracellular amino acid pools have been determined for two different steady-states. The cellular composition {total protein and protein composition, total lipids and fatty acid distribution, total carbohydrates, DNA and RNA} has been measured to calculate the requirements for biosynthesis. It is shown to be essential to determine the uptake/production rates of ammonia and either carbon dioxide or oxygen. In mammalian cells these are cometabolites of cyclic metabolic pathways. The flux distribution that is found using the Euclidean minimum norm as the additional theoretical constraint and taking either the CO2 or the NAD(P)H mass balance into account is shown to be in agreement with the measured O2 and CO2 metabolic rates.The metabolic fluxes in hybridoma cells in continuous culture at a specific growth rate of 0.83 day-1 are estimated for a medium with (optimal medium) and without (suboptimal medium) Primatone RL, an enzymatic hydrolysate of animal tissue that causes a more than twofold increase in cell density. It is concluded that (i)The majority of the consumed glucose (〉90%) is channeled through the pentose-phosphate pathway in rapidly proliferating cells.(ii)Pyruvate oxidation and tricarboxylic acid (TCA) cycle activity are relatively low, i.e., 8% of the glucose uptake in suboptimal and 14% in optimal medium, respectively. Under both conditions, only a small fraction of pyruvate is further oxidized to CO2.(iii)The flux from glutamate to α-ketoglutarate (catalyzed by glutamate dehydrogenase) is almost zero in medium with and even slightly reversed in medium without Primatone RL. Almost all glutamate enters the TCA cycle due to the action of transaminases.(iv)Transhydrogenation plays a significant role in hybridoma cells under our experimental conditions. NADPH is produced at relatively high rates (11 × 10-12 to 13 × 10-12 mol · cell-1 · day-1) compared to other fluxes in both culture media. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3592
    Keywords: cyclin E expression ; CHO cells ; insulin ; fibroblast growth factor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Exogenous growth factors normally required in cell culture activate cell proliferation via the molecular controls of cell-cycle progression. Highly differing influences of mitogenic stimulation of Chinese hamster ovary (CHO) cells by insulin and basic fibroblast growth factor(bFGF) have been clearly observed in a defined protein-free medium. CHO K1 cells stimulated only with insulin grow with flattened cell morphology and extensive cell-cell contact, whereas stimulation with only bFGF or bFGF plus insulin results in loss of cell-cell contact and a transformed and rounded-up morphology. Compared with insulin-stimulated cells, bFGF-stimulated cells exhibit a relatively long G1, and short S phase, and contain higher levels of cyclin E. Observation of elevated levels of cyclin E in wild-type CHO K1 cells mitogenically stimulated by basic fibroblast growth factor motivated transfection of these cells by a cyclin E expression vector. These transfectants grew rapidly in protein-free basal medium and had similar cyclin b levels, distributions of nuclear cell-cycle times, and cell morphologies as bFGF-stimutated CHO K1 culture. Metabolic engineering of cell-cycle regulation thus bypasses exogenous growth factor requirements, addressing a priority objective in economical, reproducible, and safe biopharmaceutical manufacturing. © 1995 John Wiley & Sons Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...