Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1528
    Keywords: Second normal stress difference ; birefringence ; tube model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Relaxation of the second normal stress difference (N 2) following step strain of a concentrated monodisperse polystyrene solution has been studied using mechanical and optical rheometry. Measurements of normal thrust in a parallel plate geometry are corrected for strain inhomogeneity and combined with independent measurements of the first normal stress difference (N 1) to determine N 2. Optical experiments were performed using a novel configuration where flow birefringence data collected using multiple light paths within the shear plane are combined with the stress-optical law to determine all three independent stress components for shearing deformations. This technique eliminates end effects, and provides an opportunity to oversample the stress tensor and develop consistency checks of experimental data. N 2 is found to be nonzero at all accessible times, and relaxes in roughly constant proportion to N 1. This reflects nonaffine distribution of chain segments, even well within the regime of chain retraction at short times. Data collected with the two techniques are reasonably consistent with each other, and with results of previous studies, generally lying between the predictions of the Doi-Edwards model with and without the independent alignment approximation. The normal stress ratio −N 2/N 1 shows pronounced strain thinning in the nonlinear regime.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 36 (1997), S. 384-396 
    ISSN: 1435-1528
    Keywords: Hydroxypropyl-cellulose ; slit flow instability ; birefringence ; x-ray scattering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract A lyotopic solution of 27 wt% hydroxypropylcellulose [HPC] in m-cresol has been studied in pressure-driven slit flow. At high flow rates an instability leads to large wavelength disturbances in fluid structure. A combination of image analysis and time signal processing is used to determine the velocity at which the structural disturbances are convected downstream, which is shown to be equal to the independently measured and predicted centerline velocity. This implies that the disturbance structure is confined near the midplane of the slit flow. Upstream of the onset point of the wavy fluid structures, the fluid exhibits unusual optical properties when viewed between crossed polarizers that are rotated relative to the flow direction. Specifically, the optical properties indicate that there must be some variation in the macroscopic optical axis of the sample as light passes through the slit flow. A discrete optical model consisting of birefringent elements twisted away from and back to the flow direction as a function of depth in the sample is able to predict the essential optical characteristics; however, independent x-ray scattering measurements show that the macroscopic molecular alignment is along the flow direction. The wavy textures apparently emerge as a result of an inhomogeneous transition of orientation back to the flow direction, trapping thin bands of fluid in the twisted configuration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...