Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: Caco-2 ; unstirred water layer ; intestinal permeability ; steroids ; cell culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Caco-2 monolayers grown on Transwell polycarbonate membranes have been characterized as a valuable tool in drug transport studies. Despite the clear advantages of this system, the lack of stirring may create an unstirred water layer (UWL) whose resistance may limit the transcellular transport of lipophilic molecules. The objective of this study was to evaluate a novel diffusion cell where the transport buffer is mixed by gas lift and to determine the mixing flow rate needed to reduce the thickness (h) of the UWL adjacent to cell monolayers. The transport of the leakage marker, mannitol, remained at least 15-fold lower than the flux of testosterone, indicating that the stirring flow rates used did not affect the integrity of the monolayers. The permeability (P) of testosterone (log PC 3.13) across monolayers mounted on this diffusion cell was 4.07, 10.90, and 14.18 × 10−5 cm/sec at flow rates of 0, 15, and 40 ml/min, respectively, and the apparent UWLs were calculated to be 1966, 733, and 564µm. P and h in the stagnant Transwell were 3.08 × 10−5 cm/sec and 2597 µm, respectively. On the other hand, h was significantly smaller in the unstirred, cell-free membranes than in their cell-containing counterparts. P was correlated with lipophilicity and, in the case of the more lipophilic compounds, with the mixing flow rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: epithelial cell cultures ; endothelial cell cultures ; transport of drugs ; cell culture ; cell culture, intestinal, rectal, buccal, sublingual, nasal, ophthalmic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract In an effort to develop novel strategies for delivery of drug candidates arising from rational drug design and recombinant DNA technology, pharmaceutical scientists have begun to employ the techniques of cell culture to study drug transport and metabolism at specific biological barriers. This review describes some of the general factors that should be considered in developing a cell culture model for transport studies and metabolism studies. In addition, we review in detail the recent progress that has been made in establishing, validating, and using cell cultures of epithelial barriers (e.g., cells that constitute the intestinal, rectal, buccal, sublingual, nasal, and ophthalmic mucosa as well as the epidermis of the skin) and the endothelial barriers (e.g., brain microvessel endothelial cells).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...