Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 12 (1979), S. 273-291 
    ISSN: 0091-7419
    Keywords: cholera toxin-receptors ; cell growth ; glycolipids-transformation ; organization in membranes ; glycolipids as cell surface receptors ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cholera toxin receptors have been isolated from both a mouse fibroblast (Balbc/3T3) and mouse lymphoid cell line labeled by the galactose oxidase borotritiide technique. Tritiated receptor-toxin complexes solubilized in NP40 were isolated by addition of toxin antibody followed by a protein A-containing strain of Staphylococcus aureus. In both cell types by far the major species of toxin receptor isolated was ganglioside in nature, although galactoproteins were also present in the immune complexes. Whether the galactoproteins form part of a toxin-receptor complex or are artifacts of the isolation procedure is presently unclear.The relative specificity of cholera toxin for a carbohydrate sequence in a glycolipid suggests that the toxin might prove a useful tool in establishing the function and organization of glycolipids in membranes. For example, interaction of cholera toxin with the mouse lymphoid cell line was shown to result in patching and capping of bound toxin, raising the possibility that the glycolipid receptor interacts indirectly with cytoskeletal elements. Cholera toxin might also be used to select for mutant fibroblasts lacking the toxin receptor and therefore having an altered glycolipid profile. Such mutants might prove useful in establishing the relationship (if any) between modified glycolipid pattern and other aspects of the transformed phenotype. Attempts to isolate mutants, based on the expectation that growth of cells containing the toxin receptor would be inhibited by the increase in cAMP levels normally induced by cholera toxin, proved unsuccessful. Cholera toxin failed to inhibit significantly the growth of either Balbc or Swiss 3T3 mouse fibroblasts although it markedly elevated cAMP levels.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...