Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • cellobiohydrolase  (1)
  • glucose-fructose oxidoreductase  (1)
  • 1
    ISSN: 0006-3592
    Keywords: glucose-fructose oxidoreductase ; Zymomonas mobilis ; free enzyme ; continuous production ; stability ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: For the continuous, enzymatic synthesis of sorbitol and gluconic acid by cell-free glucose-fructose oxidoreductase (GFOR) from Zymomonas mobilis, the principal determinants of productivity have been identified. Most important, the rapid inactivation of the soluble enzyme during substrate conversion can be avoided almost completely when weak bases such as tris(hydroxymethyl)aminomethan or imidazol are used for the titration of the produced gluconic acid and when 5-10 mM dithiothreitol are added to prevent thiol oxidations. With regard to a long-term operational stability of the enzyme for continuous syntheses, thermal deactivation becomes significant at reaction temperatures above 30°C. Without any additional purification being required, the crude cell extract of Z. mobilis can be employed in a continuous ultrafiltration membrane reactor over a time period of more than 250 h without significant decrease in substrate conversion or enzyme activity. The use of soluble GFOR thus appears to be an interesting alternative to employing permeabilized cells of Zymomonas for the production of sorbitol and gluconic acid and may be superior with regard to reactor productivities, at comparable operational stabilities. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 623-629, 1997.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 961-966 
    ISSN: 0006-3592
    Keywords: cellobiohydrolase ; endoglucanase ; adsorption ; hydrolytic efficiency ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Specific quantifications of the major cellulolytic components of the Trichoderma reesei enzyme complex, i.e., endoglucanases I and III and cellobiohydrolases I and II, are described and, employing a defined mixture of these four cellulases reconstituted according to the composition of the native Trichoderma cellulase complex, used to determine the binding of each individual component onto filter paper. During substrate degradation by this enzyme mixture, the specific adsorption of each individual cellulase gradually increases and no preferential binding of one enzyme component in any particular phase of cellulose hydrolysis is found. T. reesei cellobiohydrolases I and II admixed with endoglucanases I and III represent a “full-value” cellulase system that is capable of degrading semicrystalline cellulose efficiently. In comparison with the crude Trichoderma enzyme complex, almost identical adsorption properties and similar hydrolytic efficiency are found for the reconstituted mixture. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...