Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 961-966 
    ISSN: 0006-3592
    Keywords: cellobiohydrolase ; endoglucanase ; adsorption ; hydrolytic efficiency ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Specific quantifications of the major cellulolytic components of the Trichoderma reesei enzyme complex, i.e., endoglucanases I and III and cellobiohydrolases I and II, are described and, employing a defined mixture of these four cellulases reconstituted according to the composition of the native Trichoderma cellulase complex, used to determine the binding of each individual component onto filter paper. During substrate degradation by this enzyme mixture, the specific adsorption of each individual cellulase gradually increases and no preferential binding of one enzyme component in any particular phase of cellulose hydrolysis is found. T. reesei cellobiohydrolases I and II admixed with endoglucanases I and III represent a “full-value” cellulase system that is capable of degrading semicrystalline cellulose efficiently. In comparison with the crude Trichoderma enzyme complex, almost identical adsorption properties and similar hydrolytic efficiency are found for the reconstituted mixture. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 469-479 
    ISSN: 0006-3592
    Keywords: cellulase ; cellulose ; adsorption ; kinetics ; mathematical model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Two fractions of substrate in microcrystalline cellulose which differ in their adsorption capacities for the cellulases and their susceptibility to enzymatic attack have been identified. On the basis of a two-substrate hypothesis, mathematical models to describe enzyme adsorption and the kinetics of hydrolysis have been derived. A new nonequilibrium approach was chosen to predict cellulase-cellulose adsorption. A maximum binding capacity of 76 mg protein per gram substrate and a half-maximum saturation constant of 26 filter paper units (FPU) per gram substrate have been calculated, and a linear relationship of hydrolysis rate vs. adsorbed protein has been found. The fraction of substrate more easily hydrolyzed, as calculated from hydrolysis data, represents 19% of the total effective substrate concentration. This fraction is only slightly different from that of other celluloses and has been estimated to be 27% and 30% for NaOH- and H3PO4-swollen cellulose, respectively. The effective substrate concentration is equal to the maximum amount of the substrate which can be converted during exhaustive hydrolysis. This in turn is determined by the overall degradability of the substrate by the cellulases (85-90% for microcrystalline cellulose) and by the cellobiose concentration during hydrolysis. The kinetic model is based on a summation of two integrated first-order reactions with respect to the effective substrate concentration. Furthermore, it includes the principal factors influencing the reaction rates: the ratio of filter paper and β-glucosidase units per gram substrate and the initial substrate concentration. © 1993 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...