Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: methionine ; methionine sulfoxide ; free radicals ; ascorbate ; dithiothreitol ; catalase ; superoxide dismutase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract In the presence of oxygen, Fe(III), and an appropriate electron donor (e.g. ascorbic acid, dithiothreitol), the oxidation of methionine residues to methionine sulfoxides in small model peptides can be induced. It is shown in this study that these oxidations can be retarded by catalase in a pH-dependent manner, by some hydroxyl radical scavengers, and by azide. In contrast, superoxide dismutase has only a minimal effect, indicating that the superoxide radical does not contribute significantly to the oxidation of the methionine residue. The experimental results can be interpreted by invoking hydrogen peroxide as the major oxidizing species at pH ≤ 7, whereas the involvement of free hydroxyl radicals seems to be negligible. Other reactive oxygen intermediates such as iron-bound hydroperoxy, or site-specifically generated reactive oxygen species may be actively involved in the oxidation of methionine residues at pH 〉 7.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 490-500 
    ISSN: 0006-3592
    Keywords: protein ; peptide ; oxidation ; metal catalysis ; photooxidation ; chelator ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Oxidation is one of the major chemical degradation pathways for protein pharmaceuticals. Methionine, cysteine, histidine, tryptophan, and tyrosine are the amino acid residues most susceptible to oxidation due to their high reactivity with various reactive oxygen species. Oxidation during protein processing and storage can be induced by contaminating oxidants, catalyzed by the presence of transition metal ions and induced by light. Oxidative modification depends on the structural features of the proteins as well as the particular oxidation mechanisms inherent in various oxidative species, and may also be influenced by pH, temperature, and buffer composition. Protein oxidation may result in loss of biological activity and other undesirable pharmaceutical consequences. Strategies to stabilize proteins against oxidation can be classified into intrinsic methods (site-directed mutagenesis and chemical modification), physical methods (solid vs. liquid formulations) and use of chemical additives. The optimum choice of chemical additives needs to be evaluated on the basis of the specific oxidation mechanism. Oxidation induced by the presence of oxidants in the system is referred to as a non-site-specific mechanism. Under such conditions, oxidation can be effectively inhibited by the appropriate addition of antioxidants or free radical scavengers. metal-catalyzed oxidation is a site-specific process, in which the addition of antioxidants may accelerate the oxidation reaction. Careful screening of chelating agents has been shown to be an alternative method for preventing metal-catalyzed oxidation. © 1995 John Wiley & Sons, Inc.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...