Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-6849
    Keywords: chromosome arms ; chromosome structure ; chromosome territories ; confocal microscopy ; fluorescence in situ hybridization ; nuclear organization ; random walk/giant loop model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Fluorescence in situ hybridization (FISH) with microdissection probes from human chromosomes 3 and 6 was applied to visualize arm and subregional band domains in human amniotic fluid cell nuclei. Confocal laser scanning microscopy and quantitative three-dimensional image analysis showed a pronounced variability of p- and q-arm domain arrangements and shapes. Apparent intermingling of neighbouring arm domains was limited to the domain surface. Three-dimensional distance measurements with pter and qter probes supported a high variability of chromosome territory folding.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-7217
    Keywords: chromosomes ; breast cancer ; chromosome microdissection ; physical mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The recognition of recurring sites of chromosome changes in malignancies has greatly facilitated the identification of genes implicated in the pathogenesis of human cancers. Based especially upon recent studies [1–4], it appears increasingly likely that a subset of recurring chromosome alterations will be recognized in human breast cancer. Currently recognized chromosome changes characterizing breast carcinoma include the recognition of cytologic features of gene amplification (e.g. double minutes [dmins] and homogeneously staining regions [HSRs]) [5–8]. As these and other chromosome regions are implicated in recurring abnormalities in breast cancer, it will become increasingly important to have band-or region-specific genomic libraries and probes in order to facilitate high resolution physical mapping and ultimately to clone breast cancer related genes [9]. Toward this end an important recent development in physical mapping has been the establishment of chromosome microdissection as a rapid and reproducible approach to rapidly isolate and characterize chromosome region-specific DNA, greatly facilitating the initial steps in positional cloning of disease-related genes [10–13]. In this brief report, we will highlight the application of chromosome microdissection to the generation of region-specific probes for both fluorescent in situ hybridization (FISH) and the generation of genomic microclone libraries. Additionally, efforts using this methodology to generate a microclone library encompassing the early onset breast/ovarian cancer (BRCA1) gene will be presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...