Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4943
    Keywords: Protein–protein interactions ; circular dichroism ; protein structure ; protein conformational stability ; signal transduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Erythropoietin (EPO) is a glycoprotein hormone which belongs to the four-helical-bundle cytokine family and regulates the level of circulating red blood cells. The EPO receptor (EPOR) belongs to the cytokine-receptor family of proteins. While many of the downstream events following receptor/ligand interaction have been defined, both ligand-induced receptor dimerization and conformational changes induced by binding have been implicated as the initial step in signal transduction. In a recent paper [Philo et al. (1996), Biochemistry 38, 1681–1691] we described the formation of both 1:1 and 2:1 EPOR/EPO complexes. In this paper, we examine changes in protein conformation and stability resulting from the formation of both 1:1 and 2:1 complexes of the soluble extracellular domain of EPOR and the recombinant EPO derived from either Chinese hamster ovary cells or from Escherichia coli cells. Occupation of the first binding site results in a slight conformational change that is apparent in both the far- and near-UV circular dichroism spectra. Formation of the 2:1 complex results in an even greater change in conformation which involves the local environment of one or more aromatic amino acids, accompanied perhaps by a small increase in helical content of the complex. This change in local conformation could occur in the EPO molecule, in the EPOR, in both EPOR molecules due to dimerization, or in all molecules in the trimer. The 1:1 complex exhibits increased stability to thermal-induced denaturation relative to the individual protein component; indeed, the E. coli-derived (nonglycosylated) EPO stays folded in the complex at temperatures where the EPO alone would have unfolded and precipitated. Glycosylation of the receptor increases the reversibility of thermal denaturation, but does not affect the temperature at which this unfolding reaction occurs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4943
    Keywords: Receptor/ligand binding ; conformational change ; FTIR ; circular dichroism ; stem cell factor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Stem cell factor (SCF) is thought to be a member of the four-helical bundle cytokine superfamily, and exists in solution as a noncovalent homodimer. It is the ligand for Kit, a tyrosine kinase type III receptor. The interaction of SCF and Kit affects early hematopoietic progenitors, as well as gametocytes, melanocytes, and mast cells. Upon binding of SCF the Kit undergoes dimerization and transphosphorylation. Circular dichroism (CD), intrinsic fluorescence, and Fourier transform infrared (FTIR) spectroscopy were used for conformational analyses of free SCF, soluble Kit (sKit), and the complex. The sKit consisted of the extracellular domain of Kit, contained five Ig-like domains, and was prepared from the conditioned media of transfected Chinese hamster ovary cells. With these techniques, a reproducible conformational change was seen upon ligand/receptor binding. The far-UV CD and FTIR spectroscopy indicated a slight increase in the α-helical content. The near-UV CD and fluorescence spectra showed changes in the environments of the aromatic amino acids. The thermal denaturation of SCF was not affected by complex formation, while the melting temperature of sKit increased only a few degrees when binding SCF. This indicates that binding is temperature dependent, consistent with titration calorimetry results published previously which demonstrated that there is a large enthalpy of binding. The conformational changes which accompany SCF/sKit binding could play a role in the receptor dimerization and signal transduction which follow.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4943
    Keywords: Insulin-like growth factor ; glycosylation ; disulfide pairing ; circular dichroism ; mutation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Recombinant human insulin-like growth factor I (IGF-I) is efficiently expressed and secreted fromSaccharomyces cerevisiae using a yeast α-factor leader to direct secretion. However, approximately 10–20% of the IGF-I was in a monomeric form, the remaining materials being disulfide-linked aggregates. When the purified material was subjected to reverse-phase high-performance liquid chromatography (rp-HPLC), it gave two doublet peaks, I and II. Upon reduction, doublet peaks I and II converged to one doublet peak. This suggests that peaks I and II result from different disulfide structures, and the doublet feature of each peak results from other causes. Different disulfide structures between peaks I and II were also suggested from the near UV circular dichroism of these proteins. Only the peak II was biologically active, indicating that peak II has the correct disulfide structure. Concanavalin A affinity chromatography of the purified peak II doublet showed binding of the subpeak with an earlier rp-HPLC retention time, indicating that it was glycosylated. Sequence analysis of tryptic peptides suggested that Thr29 was the site of glycosylation. Site-directed mutagenesis was used to convert Thr29 to Asn29. This substitution reduced, but did not eliminate IGF-I glycosylation, suggesting additional glycosylation sites. The site of carbohydrate addition was consistent with the model that O-glycosylations occur on hydroxyl amino acids near proline residues in β-turns.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4943
    Keywords: Granulocyte-colony stimulating factor ; conformational changes ; circular dichroism ; guanidine-induced denaturation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Fluorescence and circular dichroism were used to follow thepH-dependent conformational changes of granulocyte colony stimulating factor (G-CSF). Tryptophan fluorescence of the spectra monitored at 344 nm, or after deconvolution of the emission spectra, at 345 nm, showed a decrease in intensity on going frompH 7 to 4, with a midtransitionpH of 5.8. On the other hand, tyrosine fluorescence measured either by the ratio of intensity at 308 nm to that at 344 nm, or by the fluorescence intensity at 303 nm after deconvolution of the spectra, increased in intensity as thepH was changed from 6 to 2.5, with a midtransitionpH of 4.5. Near UV circular dichroic spectra also showed changes betweenpH 7.5 and 4.5, which correlated with the transition monitored by the tryptophan fluorescence. The guanidine hydrochloride-induced conformational changes of G-CSF at fivepH values from 2.5 to 7.5 were also studied. Circular dichroic and fluorescence spectra revealed minor conformational changes by the addition of 1 or 2 M guanidine HCl at allpH values examined, while the major conformational transition occurred between 2 and 4 M guanidine hydrochloride. The secondary structure of the protein was most stable betweenpH 3.3 and 4.5. The guanidine HCl-induced denaturation of G-CSF involved more than a two-state transition, with detectable intermediate(s) present, and the structure of the intermediate(s) appeared to depend on thepH used. These results are consistent with thepH dependence of the structure described above, and demonstrate the complex conformational properties of G-CSF.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-904X
    Keywords: heat-induced denaturation ; MGDF ; reversibility ; sucrose ; circular dichroism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. The present study was performed to examine the effect of solution conditions on the reversibility of the thermal denaturation of megakaryocyte growth and development factor (rHuMGDF). Methods. Changes in the far U V CD spectra of rHuMGDF with temperature were used to monitor the thermal denaturation of the protein, and the recovery of folded protein following a return to room temperature. The effect of protein concentration, scan rate, and buffer composition on thermal denaturation and on the reversibility were determined. Surface tension measurements were used to determine the effect of this unfolding reaction on the surface adsorption of the protein. Sedimentation velocity was used to assess recovery of native monomer and the size of soluble aggregates. In addition, monomeric protein remaining in solution after incubation at 37°C for 2 weeks in either 10 mM imidazole of 10 mM phosphate was determined. Results. In phosphate buffer the rHuMGDF irreversibly precipitates upon unfolding under all the conditions examined. In imidazole the unfolding is at least partially reversible, with no visible precipitate seen; the degree of reversibility increased by lowering both protein and salt concentrations, and the amount of time spent at elevated temperature. In order to compare thermal unfolding occuring with different degrees of reversibility, the melting temperature was defined as the temperature at which melting begins. The melting temperature itself is relatively independent of the buffer composition, or experimental conditions. At low protein concentrations the protein stabilizer sucrose had a marginal effect on the thermal transition of rHuMGDF, while at protein concentrations of about 2 mg/ml the inclusion of sucrose increased the apparent melting temperature by about 4°C, to that seen at low protein concentrations, but had little effect on the reversibility of denaturation. Inclusion of 1 or 2 M urea did not affect the reaction. Surface tension measurements of rHuMGDF solutions showed little difference before and after melting, and in the presence or absence of sucrose. When unfolding is irreversible, the MGDF appears to form soluble aggregates of tetramers to 14-mers, while under reversible conditions native monomer is recovered. More monomeric MGDF remained in solution following storage for 2 weeks at 37°C in imidazole than in phosphate, in both the presence and absence of sucrose. Conclusions. These results can be explained by assuming that thermal denaturation proceeds as a two-step reaction, the first step being the equilibrium between folded and unfolded states, while the second step is a slow irreversible aggregation. The different buffer systems affect the rate of the aggregation step, but not the intrinsic thermal stability nor the rate of the unfolding step.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...