Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of nanoparticle research 1 (1999), S. 17-30 
    ISSN: 1572-896X
    Keywords: island growth ; sputter ; migration ; coalescence ; nanoparticle dispersion ; deposition rate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Notes: Abstract Nanoparticles formed during the initial period of film growth can migrate, coalesce, and may also melt. Nanoparticles of Au, Ag, Cu, and GaAs ranging from 1 to 15 nm in diameter were sputter-deposited on amorphous SiO2 (a-SiO2). Transmission electron microscopy was used to analyze the time-dependent change of the dispersion of particles on a thin film. The number density of nanoparticles was nearly constant during the deposition of Ag. For Au, Cu, and GaAs, however, the number density decreased with time during the early deposition period. For example, for Au the number density decreased from 2.8×1016m−2 (surface coverage ratio of 0.08) to 1.8×1016m−2 (surface coverage ratio of 0.14). The surface coverage increased because the particle size increased as the number density decreased. This decrease suggests that migration followed by coalescence occurred. For Au, although we found evidence of migration of 2-nm particles at 500°C, the migration rate was too slow to account for the results from the deposition experiments. These observations indicate an autocatalytic mechanism that migration followed by coalescence liberates energy by the formation of chemical bonds, heats the coalesced particles, and enhances further migration. The strong dependence of the structure of nanoparticle dispersions on the deposition rate is a direct consequence of the deposition mechanism, which is a nonlinear, kinetically-controlled process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...