Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 19 (1998), S. 1862-1876 
    ISSN: 0192-8651
    Keywords: protonation of glycine ; ab initio calculations ; conformational analysis ; gas-phase basicity ; amino acids ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Ab initio geometry optimizations were performed on gaseous protonated glycine using the second-order Møller-Plesset perturbation theory with the 6-31G*, 6-31G**, 6-31+G**, and 6-311+G** basis sets. Eight energy minima and 12 saddle points in the low-energy region of the electronic potential energy surface were characterized. The global minimum was an amino N-protonated conformer containing an ionic H bond between the (SINGLE BOND)NH3+ and O(DOUBLE BOND)C(DIAGONAL BOND)(DIAGONAL BOND) groups. The lowest energy O-protonated conformer was stabilized by a conjugative attraction between the nitrogen lone-pair electrons and the positively charged planar fragment (SINGLE BOND)C(OH)2+. Relative electronic energies of the nine N- and 11 O-protonated species fall in the ranges of 0-10 and 30-40 kcal mol-1. At room temperature the equilibrium distribution contained the most stable N-protonated conformer almost exclusively. Additional subjects for investigation include the effects of basis set and electron correlation on the predicted structures, nonbonded interactions that influence the relative stability of protonated conformers, conformational interconversions based on intrinsic reaction coordinate calculations, and kinetic pathways for protonation and associated changes in Gibbs free energy. The work provides geometric, energetic, and thermodynamic data pertinent to the study of gas-phase ion chemistry of amino acids and peptides.   © 1998 John Wiley & Sons, Inc.   J Comput Chem 19: 1862-1876, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...