Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 371-376 
    ISSN: 0887-624X
    Keywords: poly(arylene ether ether ketone) ; photoreactive polymer ; nucleophilic substitution ; photosensitivity ; contrast ; negative type ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Isopropyl substituted poly(phenylene ether ether ketone) with a high molecular weight was prepared by nucleophilic substitution reaction of isopropyl-substituted difluoro diaryl ether with hydroquinone. This polymer was amorphous and soluble in common organic solvents, such as THF, chloroform, and cyclohexanone. Thermogravimetry of the polymer showed good thermal stability, indicating that a 10% weight loss of the polymer was observed at 470°C in nitrogen. The glass transition temperature of the polymer was 145°C. The polymer had a broad UV absorption band over 250-380 nm. The polymer acted as a photosensitive resist of negative type for UV radiation. The resist had a sensitivity of 40 mJ/cm2 and a contrast of 2.8, when it was developed with DMF at room temperature. © 1997 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 32 (1994), S. 2065-2071 
    ISSN: 0887-624X
    Keywords: poly(ether-ketone-amide) ; palladium-catalyzed polycondensation ; aromatic dibromide ; carbon monoxide ; thermal behavior ; tensile properties ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Aromatic poly(ether-ketone-amide)s were prepared by the palladium-catalyzed polycondensation of aromatic dibromides containing ether ketone units, aromatic diamines, and carbon monoxide. Polymerizations were carried out in N,N-dimethylacetamide (DMAc) in the presence of palladium catalyst, triphenylphosphine, and 1,8-diazabicyclo [5,4,0]-7-undecene (DBU), and resulted in poly(ether-ketone-amide)s with inherent viscosities up to 0.82 dL/g under mild conditions. The polymers were quite soluble in strong acid, dipolar aprotic solvents, and pyridine. Thermogravimetry of the polymers showed excellent thermal stability, indicating that 10% weight losses of the polymers were observed in the range above 400°C in nitrogen atmosphere. The glass transition temperatures of the polymers were about 200°C, which are higher than those of poly(ether-ketone) analogues. These polymers also showed good tensile strength and tensile modulus. © 1994 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 32 (1994), S. 2989-2995 
    ISSN: 0887-624X
    Keywords: poly (ether-sulfone-amide) ; palladium-catalyzed polycondensation ; aromatic dibromide ; carbon monoxide ; thermal behavior ; tensile properties ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A general method for the preparation of aromatic poly (ether-sulfone-amide)s has been developed. Polymerization is based on the palladium-catalyzed polycondensation of aromatic dibromides containing ether sulfone structural units, aromatic diamines, and carbon monoxide. Reactions were carried out in N, N-dimethylacetamide (DMAc) in the presence of palladium catalyst, triphenylphosphine, and 1,8-diazabicyclo [5,4,0]-7-undecene (DBU), and gave a series of poly (ether-sulfone-amide)s with inherent viscosities up to 0.86 dL/g under mild conditions. The polymers were quite soluble in strong acids, dipolar aprotic solvents, and pyridine. Thermogravimetry of the polymers showed excellent thermal stability, indicating that 10% weight losses of the polymers were observed in the range above 470°C in air. The glass transition temperatures of the polymers were around 230°C, which are higher than those of poly (ether-sulfone) analogues. These polymers also showed the good tensile strengths and tensile modulus. © 1994 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 34 (1996), S. 109-115 
    ISSN: 0887-624X
    Keywords: poly(ether ether ketone) ; photoreactive polymer ; nucleophilic substitution ; electrophilic substitution ; photosensitivity ; contrast ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Poly(ether ether ketone)s containing alkyl groups were prepared by nucleophilic substitution reaction of alkyl-substituted difluoro diaryl ethers with hydroquinone or by electrophilic substitution reaction of alkyl-substituted diaryl ether with 4,4′-oxydibenzoic acid in PPMA. Polycondensations proceeded smoothly and produced polymers having inherent viscosities up to 0.5--1.6 dL/g. The polymers were quite soluble in strong acid, dipolar aprotic solvents, and chloroform at room temperature. Thermogravimetry of the polymers showed excellent thermal stability, indicating that 10% weight loses of the polymers were observed in the range above 450°C in nitrogen atmosphere. The glass transition temperatures of the polymers ranged from 128 to 146°C. Furthermore, Polymer 3b functioned as a photosensitive resist of negative type for UV radiation. The resist had a sensitivity of 42 mJ/cm2 and a contrast of 2.5, when it was postbaked at 100°C for 10 min, followed by development with THF/acetone at room temperature. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...