Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • correlation  (1)
  • oil production  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 9 (1989), S. 81-99 
    ISSN: 1573-0662
    Keywords: Arctic ; atmosphere ; methane ; carbon dioxide ; haze ; correlation ; AGASP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Fifty flask air samples were taken during April 1986 from a NOAA WP-3D Orion aircraft which flew missions across a broad region of the Arctic as part of the second Arctic Gas and Aerosol Sampling Program (AGASP II). The samples were subsequently analyzed for both carbon dioxide (CO2) and methane (CH4). The samples were taken in well-defined layers of Arctic haze, in the background troposphere where no haze was detected, and from near the surface to the lower stratosphere. Vertical profiles were specifically measured in the vicinity of Barrow, Alaska to enable comparisons with routine surface measurements made at the NOAA/GMCC observatory. Elevated levels of both methane and carbon dioxide were found in haze layers. For samples taken in the background troposphere we found negative vertical gradients (lower concentrations aloft) for both gases. For the entire data set (including samples collected in the haze layers) we found a strong positive correlation between the methane and carbon dioxide concentrations, with a linear regression slope of 17.5 ppb CH4/ppm CO2, a standard error of 0.6, and a correlation coefficient (r2) of 0.95. This correlation between the two gases seen in the aircraft samples was corroborated by in situ surface measurements of these gases made at the Barrow observatory during March and April 1986. We also find a similar relationship between methane and carbon dioxide measured concurrenty for a short period in the moderately polluted urban atmosphere of Boulder, Colorado. We suggest that the strong correlation between methane and carbon dioxide concentrations reflects a common source region for both, with subsequent long-range transport of the polluted air to the Arctic.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0662
    Keywords: Methane ; nitrogen oxides ; oil production ; emissions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract In this paper we quantify the CH4, CO2 and NO x emissions during routine operations at a major oil and gas production facility, Prudhoe Bay, Alaska, using the concentrations of combustion by products measured at the NOAA-CMDL observatory at Barrow, Alaska and fuel consumption data from Prudhoe Bay. During the 1989 and 1990 measurement campaigns, 10 periods (called ‘events’) were unambiguously identified where surface winds carry the Prudhoe Bay emissions to Barrow (approximately 300 km). The events ranged in duration from 8–48 h and bring ambient air masses containing substantially elevated concentrations of CH4, CO2 and NO y to Barrow. Using the slope of the observed CH4 vs CO2 concentrations during the events and the CO2 emissions based on reported fuel consumption data, we calculate annual CH4 emissions of (24+/−8)×103 metric tons from the facility. In a similar manner, the annual NO x emissions are calculated to be (12+/−4)×103 metric tons, which is in agreement with an independently determined value. The calculated CH4 emissions represent the amount released during routine operations including leakage. However this quantity would not include CH4 released during non-routine operations, such as from venting or gas flaring.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...